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Abstract. In this paper, we show that for several different families of modular forms, the zeros of
these modular forms are transcendental (aside from a finite number of exceptions). These families
in particular include the Eisenstein series for several different Γ+

0 (p) and Γ0(p), cuspidal projections
of products of Eisenstein series, and certain forms in the Miller basis. Related results have been
previously shown before; we put these previous results into a more general framework for showing
transcendence of zeros.

1. Introduction

In this paper, we investigate when the zeros of modular forms are transcendental. Let H :=

{z ∈ C : Im(z) > 0} denote the complex upper half-plane. And recall that SL2(Z) acts on H with
fundamental domain

F :=

{
z = x+ iy ∈ H : |z| ≥ 1,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H : |z| > 1, 0 < x <

1

2

}
.

For even integers k ≥ 4, let Ek(z) :=
1
2

∑
(c,d)=1(cz + d)−k denote the normalized Eisenstein series

of weight k and full modular group SL2(Z). Most of the specific modular forms we consider in this
paper are constructed from these Eisenstein series.

In [25], Schneider showed that if the value of the j-invariant j(z) is algebraic, then z is either
transcendental or a CM point. Using this result, Kanou [13] showed that for k = 12 or k ≥ 16, at
least one of the zeros of Ek in F is transcendental. Three years later, Kohnen [14] managed to show
that, in fact, all the zeros of Ek in F (with the possible exceptions of ρ and i) are transcendental.
To show this generalization, Kohnen utilized information on the location of zeros of Eisenstein
series. In particular, he used a result from Rankin and Swinnerton-Dyer [20] stating that all the
zeros of Ek in F lie on the lower arc A =

{
z ∈ H : |z| = 1,−1

2 ≤ x ≤ 0
}

. Similar results for other
families of modular forms were later shown in [3, 4, 9, 11, 12].

In this paper, we first prove Theorem 1.1, showing how one can pass from information about
locations of zeros to information about transcendence of zeros in certain scenarios. This theorem
puts the arguments from all the previous papers [3, 4, 9, 11, 12, 14] in a more general context;
although not explictly stated, the idea behind Theorem 1.1 essentially makes up the general phi-
losophy behind these papers. In particular, Theorem 1.1 implies the main results of [3] and [4], as
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well as [11, Theorems 5, 6]. In the case of p = 1, Theorem 1.1 also recovers [11, Theorem 3], which
in turn implies the main results of [9], [12], and [14].

In the following theorem, F(p) denotes the fundamental domain for Γ0(p), and A(p) is a certain
arc inside Γ0(p), both defined later in Subsection 4.1.

Theorem 1.1. Fix p ∈ {1, 2, 3, 5, 7}. Let f be a nonzero modular form of weight k for Γ0(p) with
rational Fourier coefficients at infinity. Suppose that all the zeros of f in F(p) lie on the arc A(p).
Then all the zeros of f are transcendental except for possibly the following:

p Possible Algebraic Zeros

1 ρ, i

2 i
√
2

2 , −1+i
2 , ±1+i

√
7

4

3 i
√
3

3 , −3+i
√
3

6 , ±1+i
√
11

6 , ±1+i
√
2

3

5 i
√
5

5 , ±1+i
√
19

10 , ±1+2i
5 , ±2+i

5 , ±3+i
√
11

10 , −5+i
√
5

10

7 i
√
7

7 , −7+i
√
7

14 , ±6+i
√
6

14 , ±5+i
√
3

14 , ±4+2i
√
3

14 , ±3+i
√
19

14 , ±2+2i
√
6

14 , ±1+3i
√
3

14

This theorem can be applied to several different examples of modular forms. Specifically in
Corollaries 4.1 and 4.2, we apply this theorem to obtain a complete list of algebraic zeros for
E±

k,p(z) := 1
1±pk/2

(
Ek(z)± pk/2Ek(pz)

)
. Later in Section 6, we will also apply this theorem to

certain forms in the Miller basis.

Next, we show Theorem 1.2, which addresses modular forms of level one with zeros lying on the
boundary of F . We would like to point out that contrary to all the previous results in this area,
this theorem shows transcendence for zeros lying on an unbounded curve.

Theorem 1.2. Let f be a modular form of weight k for SL2(Z) with rational Fourier coefficients
at infinity. Suppose that all the zeros of f in F lie on the boundary of F . Then aside from the
finitely many CM points in E , every zero of f in F is transcendental.

Here, E denotes the set of CM points with class group of exponent dividing 2 and discriminant
odd or −4. Conditional on the non-existence of Siegel zeros, E is precisely the set of 109 CM
points with discriminants given in the table from Lemma 2.2. Unconditionally, E could possibly
also include the CM points arising from one additional fundamental discriminant.

This theorem implies, for example, the transcendence of (all but finitely many of) the zeros of
the cuspidal projection of the product of two Eisenstein series ∆k,` := EkE` − Ek+`. In fact, we
conjecture in Conjecture 5.2 that, other than ρ and i, all the zeros of ∆k,` are transcendental.

Finally, in Section 6, we address the Miller basis for Sk, the space of cusp forms of weight k and
level one. We show transcendence of zeros for the first 2/9 of the Miller basis, as well as for the
last T forms in the Miller basis (for any given value of T ≥ 1).
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Theorem 1.3. For k ≥ 4 and n(k) := dimSk, let {gk,m}n(k)m=1 denote the Miller basis for Sk.
(1) For 1 ≤ m < 2n(k)−19

9 , other than ρ and i, the zeros of gk,m are all transcendental.
(2) Fix any T ≥ 1. Then for sufficiently large k, other than i and ρ, the zeros of the last T forms
in the Miller basis gk,n(k)−T+1, . . . , gk,n(k) are all transcendental.

In order to show Theorems 1.1, 1.2, and 1.3, we state a proposition for showing such tran-
scendence results in general. Although not written down explicitly, the level one version of this
proposition is implicit in [14], and we use the ideas in [10] to generalize it to modular forms of level
N .

Proposition 1.4. Given a nonzero modular form f over Γ(N) with algebraic Fourier coefficients
at infinity, all the zeros of f are either CM points or transcendental. Furthermore, suppose that
the Fourier coefficients at infinity of f are rational and that z0 ∈ CMD is a zero of f . Then for
every z1 ∈ CMD, there exists some γ ∈ SL2(Z) such that f(γz1) = 0.

We now give an overview of the paper. In Section 2, we discuss several preliminaries, including
basic properties of the j-invariant, the j-invariant polynomial for modular forms, and the basics of
CM theory. We also cite Lemma 2.2, which follows from our recent classification of class groups of
exponent 2 [1]. Next, in Section 3, we prove Proposition 1.4. We then use this proposition to prove
Theorem 1.1 in Section 4. We also apply this theorem to specific examples of modular forms in
Corollaries 4.1 and 4.2. Next, we show Theorem 1.2 in Section 5 and apply it to show transcendence
of zeros for cuspidal projections of products of Eisenstein series. We also state a conjecture about
the zeros of these cuspidal projections of products of Eisenstein series. Finally, we show Theorem
1.3 in Section 6. We also state a conjecture about the zeros of the Miller basis.

2. Preliminaries

Let
∆ :=

E3
4 − E2

6

1728
j :=

E3
4

∆
denote the modular discriminant and the Klein j-invariant, respectively.

For an even integer k ≥ 4 write k = 12n(k)+sk, where sk ∈ {0, 4, 6, 8, 10, 14} and n(k) = dimSk.
Furthermore, set a(k) ≡ k mod 3 where a(k) ∈ {0, 1, 2}, and b(k) ≡ k

2 mod 2 where b(k) ∈ {0, 1}.
By the valence formula, a modular form of weight k must have zeros at the elliptic points ρ and i

of certain orders. Here, a(k) and b(k) denote the orders at ρ and i respectively, as dictated by the
valence formula. We call these zeros dictated by the valence formula the trivial zeros of a modular
form of weight k.

We now state the following lemma, defining the j-invariant polynomials (see e.g. [24]).

Lemma 2.1. Given a modular form f of level one and weight k, there is a unique polynomial Pf

of degree exactly n(k)− ord∞(f) such that

f = ∆n(k)E
a(k)
4 E

b(k)
6 Pf (j).
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We call Pf the j-invariant polynomial of f .

Here, the non-trivial zeros z0 of f correspond precisely to the zeros j(z0) of Pf . For this reason,
it can often be a helpful perspective to view modular forms through the lens of their j-invariant
polynomials. In most cases, it is easier to work with polynomials than with modular forms directly.
Hence viewing modular forms in terms of their j-invariant polynomials can make it easier to address
questions about the zeros of said modular forms (see e.g. [6, 12, 8, 24]).

Next, we review the basics of CM theory. The details here are all standard, and can be found in
Cox [5]. We will use this theory to study the algebraic zeros of modular forms in Section 3.

A CM point z of discriminant D is the solution in H of a quadratic equation az2 + bz + c = 0.
Here a, b, c ∈ Z are chosen such that a > 0, gcd(a, b, c) = 1, and D = b2−4ac < 0. Let CMD denote
the set of CM points of discriminant D. For any discriminant D, it turns out that SL2(Z) acts on
CMD via the usual action of SL2(Z) on H. Hence, we say that two CMD points are equivalent if
they are SL2(Z) equivalent. Then there is a bijection between CMD modulo SL2(Z) and the class
group Cl(OD), with SL2(Z)\CMD inheriting the group structure of Cl(OD). Recall that OD here is
the imaginary quadratic order of discriminant D [5, Chapter 11, Section D]. Also, h(D) = |Cl(OD)|
is known as the class number for discriminant D [18, A014600]. Finally, a discriminant D is
fundamental if it is the discriminant of the quadratic field Q(

√
D).

We also cite the following result concerning CM points lying on the boundary of F , which we
recently showed in [1]. This will be used later for Theorem 1.2.

Lemma 2.2 ([1, Theorem 1.2]). Consider negative discriminants D. Then every CMD point
contained in F lies on the boundary of F if and only if Cl(OD) has exponent dividing 2 and D is
odd or −4.

Furthermore, conditional on the non-existence of Siegel zeros, such discriminants D are pre-
cisely those given in the following table. Unconditionally, this table could possibly also include the
discriminants arising from one additional fundamental discriminant.

Class Group Discriminants

{e} −3,−4,−7,−11,−19,−27,−43,−67,−163

Z/2Z −15,−35,−51,−75,−91,−99,−115,−123,−147,−187,−235,−267,−403,−427

(Z/2Z)2 −195,−315,−435,−483,−555,−595,−627,−715,−795,−1435

(Z/2Z)3 −1155,−1995,−3003,−3315

Finally, we cite two key lemmas concerning algebraicity of the j-invariant, which will be used
throughout the paper. The first lemma follows from [5, Theorem 11.1, Proposition 13.2].

Lemma 2.3. If z ∈ CMD for some discriminant D, then j(z) is an algebraic integer of degree
|Cl(OD)|. Moreover, if w ∈ CMD as well, then j(z) is Galois conjugate to j(w) over Q(

√
D).

The second lemma from Schneider gives a way to show transcendence of certain z ∈ H.
4



Lemma 2.4 ([25]). If z ∈ H, and j(z) is algebraic, then either z is transcendental or a CM point.

3. General Method

In this section, we outline the general method used to prove transcendence of zeros of modular
forms, culminating in Proposition 1.4. This result combined with information about the locations
of zeros will allow us to prove Theorems 1.1 and 1.2. We first prove the claim for level one modular
forms.

Lemma 3.1. Given a nonzero modular form f of level one with algebraic Fourier coefficients, all
the zeros of f are either CM points or transcendental. Furthermore, if the Fourier coefficients are
rational and some z0 ∈ CMD is a zero of f , every z1 ∈ CMD is also a zero of f .

Proof. Fix a modular form f of weight k and level one with algebraic Fourier coefficients, and
suppose that f(z0) = 0.

If z0 = ρ or i, then z0 is a CM point of discriminant −3 or −4, respectively. Furthermore,
because the class numbers of discriminants −3 and −4 are both 1, |Cl(OD)| = 1, and so f(z1) = 0

for all z1 ∈ CMD (in this case, regardless of whether or not f has rational Fourier coefficients).

Otherwise, assume z0 6= ρ, i. Then the j-invariant polynomial Pf (j) for f is non-constant and
Pf (j(z0)) = 0. Because f has algebraic Fourier coefficients, Pf also has algebraic coefficients, and
so j(z0) is algebraic. Then by Lemma 2.4, z0 is either a CM point or transcendental, finishing the
proof of the first claim.

Now, suppose that the Fourier coefficients of f are rational and that z0 ∈ CMD. Then by Lemma
2.3, for every z1 ∈ CMD, j(z0) must be sent to j(z1) by some Galois automorphism σ fixing Q(

√
D).

Then using the fact that the coefficients of Pf are rational (since the Fourier coefficients of f are
rational), applying σ to the equation Pf (j(z0)) = 0 gives that likewise Pf (j(z1)) = 0. This then
yields f(z1) = 0, as desired. �

We now prove Proposition 1.4.

Proposition 1.4. Given a nonzero modular form f over Γ(N) with algebraic Fourier coefficients
at infinity, all the zeros of f are either CM points or transcendental. Furthermore, suppose that
the Fourier coefficients at infinity of f are rational and that z0 ∈ CMD is a zero of f . Then for
every z1 ∈ CMD, there exists some γ ∈ SL2(Z) such that f(γz1) = 0.

Proof. Let f be a modular form of weight k, level N , and with algebraic Fourier coefficients. Then
the product over cosets of Γ(N) in SL2(Z),

F :=
∏

γ∈Γ(N)\SL2(Z)

f |kγ,

is a modular form for the full modular group SL2(Z) with algebraic Fourier coefficients [2, Theorem
4.1]. Note that any zero of f is also a zero of F . Thus by applying Lemma 3.1 to F , all the zeros
of f are either CM points or transcendental.
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Furthermore, if f has rational Fourier coefficients at infinity, then so does F . This is a conse-
quence of [2, Theorem 3.3], which implies that for any fixed σ ∈ Aut(C), we have

F σ =
∏

γ∈Γ(N)\SL2(Z)

(f |kγ)σ =
∏

γ∈Γ(N)\SL2(Z)

fσ|kγλ,

where λ is a certain element of (Z/NZ)×, and
(
a b
c d

)
λ
≡
(

a λb
λ−1c d

)
(mod N). Observe that the map(

a b
c d

)
7→
(
a b
c d

)
λ

is a permutation on SL2(Z/NZ) ∼= Γ(N)\SL2(Z). Hence since fσ = f ,

F σ =
∏

γ∈Γ(N)\SL2(Z)

fσ|kγλ =
∏

γ′∈Γ(N)\SL2(Z)

f |kγ′ = F,

which means that F has rational Fourier coefficients. So if any z0 ∈ CMD is a zero of f , then by
Lemma 3.1, F (z1) = 0 for all z1 ∈ CMD. This means that for all z1 ∈ CMD, f(γz1) = 0 for some
γ ∈ Γ(N)\SL2(Z), as desired. �

4. Modular forms with zeros on the arcs A(p)

We now prove Theorem 1.1, showing transcendence of zeros for modular forms with zeros on
certain arcs. We also apply these results to several specific examples of modular forms.

4.1. Proof of Theorem 1.1.

For p = 1, 2, 3, 5, 7, let F(p) denote the following fundamental domains associated to Γ0(p).

F(1) := F =

{
z ∈ H : |z| ≥ 1,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H : |z| > 1, 0 < x <

1

2

}
,

F(2) :=

{
z ∈ H :

∣∣∣∣z + 1

2

∣∣∣∣ ≥ 1

2
,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H :

∣∣∣∣z − 1

2

∣∣∣∣ > 1

2
, 0 < x <

1

2

}
,

F(3) :=

{
z ∈ H :

∣∣∣∣z + 1

3

∣∣∣∣ ≥ 1

3
,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H :

∣∣∣∣z − 1

3

∣∣∣∣ > 1

3
, 0 < x <

1

2

}
,

F(5) :=

{
z ∈ H :

∣∣∣∣z + 1

4

∣∣∣∣ ≥ 1

4
,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H :

∣∣∣∣z − 1

4

∣∣∣∣ > 1

4
, 0 < x <

1

2

}
,

F(7) :=

{
z ∈ H :

∣∣∣∣z + 1

5

∣∣∣∣ ≥ 1

5
,

∣∣∣∣z + 3

8

∣∣∣∣ ≥ 1

8
,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H :

∣∣∣∣z − 1

5

∣∣∣∣ > 1

5
,

∣∣∣∣z − 3

8

∣∣∣∣ > 1

8
, 0 < x <

1

2

}
.

Let A(p) denote the following arcs in each of these F(p).

A(1) :=

{
z ∈ H : |z| = 1,−1

2
≤ x ≤ 0

}
,

A(2) :=

{
z ∈ H : |z| = 1√

2
,−1

2
≤ x <

1

2

}
,

A(3) :=

{
z ∈ H : |z| = 1√

3
,−1

2
≤ x <

1

2

}
,

A(5) :=

{
z ∈ H : |z| = 1√

5
,−2

5
≤ x <

2

5

}
∪
{
z ∈ H :

∣∣∣∣z + 1

2

∣∣∣∣ = 1

2
√
5
,−1

2
≤ x < −2

5

}
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∪
{
z ∈ H :

∣∣∣∣z − 1

2

∣∣∣∣ = 1

2
√
5
,
2

5
≤ x <

1

2

}
,

A(7) :=

{
z ∈ H : |z| = 1√

7
,− 5

14
≤ x <

5

14

}
∪
{
z ∈ H :

∣∣∣∣z + 1

2

∣∣∣∣ = 1

2
√
7
,−1

2
≤ x < − 5

14

}
∪
{
z ∈ H :

∣∣∣∣z − 1

2

∣∣∣∣ = 1

2
√
7
,
5

14
≤ x <

1

2

}
.

We also provide a picture of these F(p) and A(p) in Figure 4.1.

(a) F(1) and A(1) (b) F(2) and A(2) (c) F(3) and A(3)

(d) F(5) and A(5) (e) F(7) and A(7)

Figure 4.1. The fundamental domains F(p) and corresponding arcs A(p) for p =

1, 2, 3, 5, 7. The blue lines denote translates of the boundary of F(1), the purple
dashed lines denote translates of the imaginary line in F(1), and the red arc denotes
A(p).

We now prove transcendence of zeros for modular forms over Γ0(p) with zeros lying on A(p).
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Theorem 1.1. Fix p ∈ {1, 2, 3, 5, 7}. Let f be a nonzero modular form of weight k for Γ0(p) with
rational Fourier coefficients at infinity. Suppose that all the zeros of f in F(p) lie on the arc A(p).
Then all the zeros of f are transcendental except for possibly the following:

p Possible Algebraic Zeros

1 ρ, i

2 i
√
2

2 , −1+i
2 , ±1+i

√
7

4

3 i
√
3

3 , −3+i
√
3

6 , ±1+i
√
11

6 , ±1+i
√
2

3

5 i
√
5

5 , ±1+i
√
19

10 , ±1+2i
5 , ±2+i

5 , ±3+i
√
11

10 , −5+i
√
5

10

7 i
√
7

7 , −7+i
√
7

14 , ±6+i
√
6

14 , ±5+i
√
3

14 , ±4+2i
√
3

14 , ±3+i
√
19

14 , ±2+2i
√
6

14 , ±1+3i
√
3

14

Proof. The level p = 1 case of this theorem was shown in [11, Theorem 3]; we extend to levels
p > 1. We give all the details for p = 2, and the arguments for p = 3, 5, 7 are nearly identical.

Let z0 be a non-transcendental zero of f in F(2). Then we will show that z0 is equal to i
√
2

2 ,
−1+i

2 , or ±1+i
√
7

4 . By Proposition 1.4, z0 must be a CM point, say of discriminant D. Moreover,
every CMD point must be SL2(Z)-equivalent to a zero of f . Now, by [5, Theorem 3.9], the identity
element of CMD in F(1) either lies on the left boundary L1 of F(1) or the imaginary axis L2 in
F(1). Hence there exists a zero z1 of f that lies on an SL2(Z)-translate of L1 or L2.

But there are only finitely many intersection points of A(2) with the SL2(Z) translates of L1 and
L2 (see Figure 4.1). In particular, computing these intersection points tells us that

z1 =
i
√
2

2
,
−1 + i

2
, or ±1 + i

√
7

4
.

The corresponding discriminants of these points are −8, −4, and −7 respectively. Each of these
discriminants has class number 1, so in fact we must have z0 ≡ z1 mod SL2(Z). In particular, z0
also lies on a SL2(Z)-translate of L1 or L2. Hence by the same argument as for z1, we must have
z0 =

i
√
2

2 , −1+i
2 , or ±1+i

√
7

4 , completing the proof for p = 2.

For p = 3, the intersection points are i
√
3

3 , −3+i
√
3

6 , ±1+i
√
11

6 , and ±1+i
√
2

3 . The corresponding
discriminants of these points are −12, −3, −11, and −8. And each of these discriminants has class
number 1. Hence by the same argument as for p = 2, these are the only possible non-transcendental
zeros of f .

For p = 5, the intersection points are i
√
5

5 , ±1+i
√
19

10 , ±1+2i
5 , ±2+i

5 , ±3+i
√
11

10 , and −5+i
√
5

10 . The
corresponding discriminants are −20, −19, −16, −4, −11, and −20. Other than −20, these dis-
criminants all have class number 1. Discriminant −20 has class number 2, so in this case, z0 is
SL2(Z)-equivalent to either i

√
5

5 or −5+i
√
5

10 (which are both already contained in the list of intersec-
tion points).

For p = 7, the intersection points are i
√
7

7 , ±7+i
√
7

14 , ±6+i
√
6

14 , ±5+i
√
3

14 , ±4+2i
√
3

14 , ±3+i
√
19

14 , ±2+2i
√
6

14 ,
and ±1+3i

√
3

14 . The corresponding discriminants are −28, −7, −24, −3, −12, −19, −24, and −27.
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Other than −24, these all have class number 1. Discriminant −24 has class number 2, so in this
case, z0 is SL2(Z)-equivalent to either ±6+i

√
6

14 or ±2+2i
√
6

14 (which are both already contained in the
list of intersection points). �

4.2. Applications of Theorem 1.1.

We note that Theorem 1.1 recovers the main results of [4] and [3], as well as [11, Theorems 5,
6]. For the case of p = 1, Theorem 1.1 recovers [11, Theorem 3], which in turn implies the main
results of [9], [12], and [14].

We give several additional interesting consequences of Theorem 1.1 for modular forms of higher
level. In particular, let

E−
k,2(z) :=

1

1− 2k/2

(
Ek(z)− 2k/2Ek(2z)

)
,

which is the Eisenstein series associated with Γ0(2). In this case, it was shown by Oh [19] that all
the zeros of E−

k,2 lie on A(2). As a part of the proof, Oh showed that E−
k,2

(
i
√
2

2

)
= 0 if and only if

k ≡ 0 (mod 4) and E−
k,2

(−1+i
2

)
= 0 if and only if k ≡ 0, 2, 6 (mod 8). Using Theorem 1.1, we show

that in fact, these are the only two possible algebraic zeros of E−
k,2.

Corollary 4.1. Other than i
√
2

2 and −1+i
2 , every zero of E−

k,2 in F(2) is transcendental.

Proof. From Theorem 1.1, we know that i
√
2

2 , −1+i
2 , and ±1+i

√
7

4 are the only possible algebraic
zeros of E−

k,2. We show that in fact α := ±1+i
√
7

4 cannot be a zero using the structure of E−
k,2. First,

note that there exists γ =
(
a b
c d

)
∈ SL2(Z) such that γ(2α) = α; in particular(
0 −1
1 ∓1

)(
±1 + i

√
7

2

)
=

±1 + i
√
7

4
.

This means that

E−
k,2(α) =

1

1− 2k/2

(
Ek(α)− 2k/2Ek(2α)

)
=

1

1− 2k/2

(
Ek(γ(2α))− 2k/2Ek(2α)

)
=

1

1− 2k/2

(
(2cα+ d)kEk(2α)− 2k/2Ek(2α)

)
=

Ek(2α)

1− 2k/2

(
(2cα+ d)k − 2k/2

)
.

The above expression vanishes if and only if Ek(2α) = 0 or (2cα+ d)k = 2k/2.

For the first case, notice that α is not an SL2(Z)-translate of ρ or i, so it cannot be a zero of Ek

by [14]. The second case requires that (2cα+d)k/2 =
(
∓1+i

√
7

2

)k
= 2k/2. But this would mean that(

∓1+i
√
7

2

)k
is rational, which is impossible by [17, Theorem 3.7]. Thus in all cases, α = ±1+i

√
7

4 is
not a zero of E−

k,2. �
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For p prime, the Eisenstein series

E+
k,p(z) :=

1

1 + pk/2

(
Ek(z) + pk/2Ek(pz)

)
is a modular form of weight k on the Fricke group Γ+

0 (p) := Γ0(p) ∪ Γ0(p)Wp, where

Wp :=
(

0 −1/
√
p√

p 0

)
.

Denote F+(p) as the standard fundamental domain of Γ+
0 (p), (the part of F(p) lying above A(p);

see [16, 26, 15]). For p = 2, 3, 5, 7, the zeros of E+
k,p in F+(p) were shown to lie on the left half of

A(p) in [16, 26, 15].

For p = 2, 3, Gun and Saha have already shown the transcendence of all but finitely many of
the zeros of E+

k,2 and E+
k,3 in [11, Theorems 5, 6]. We improve on this result, further eliminating

possible algebraic zeros and showing similar statements for p = 5, 7.

Corollary 4.2. Fix p ∈ {1, 2, 3, 5, 7}. Then all zeros of E+
k,p in F+(p) are transcendental except

possibly for the following elliptic points:

p Possible Algebraic Zeros

1 ρ, i

2 i
√
2

2 , −1+i
2

3 i
√
3

3 , −3+i
√
3

6

5 i
√
5

5 , −2+i
5 , −5+i

√
5

10

7 i
√
7

7 , −5+i
√
3

14 , −7+i
√
7

14

Proof. Observe that Γ0(p) ⊆ Γ+
0 (p). Furthermore, due to the symmetry of Γ+

0 (p), all the zeros of
E+

k,p in F(p) lie on the arc A(p). Therefore we can apply Theorem 1.1. To avoid redundancy, we
will consider only the zeros in F+(p), i.e. the ones lying on the left half of A(p). Now, we consider
each value of p separately.

In the following, we use the same proof strategy and notation as in Corollary 4.1.

Case p = 1: Here, E+
k,1 is simply the Eisenstein series over the full modular group SL2(Z), and

so this case was already shown in [14].

Case p = 2: The proof is essentially identical to Corollary 4.1.

Case p = 3: From Theorem 1.1, the possible CM zeros are i
√
3

3 , −3+i
√
3

6 , −1+i
√
11

6 , and −1+i
√
2

3 .
Notice that for α = −1+i

√
11

6 , −1+i
√
2

3 ,(
0 −1
1 1

)(
−1 + i

√
11

2

)
=

−1 + i
√
11

6
,

(
0 −1
1 2

)(
−1 + i

√
2
)
=

−1 + i
√
2

3
.

10



Hence by a similar argument as in Corollary 4.1 we have

E+
k,3(α) =

Ek(3α)

1 + 3k/2

(
(3cα+ d)k + 3k/2

)
.

Thus α can only be a zero of E+
k,3 if (3cα+d)k = −3k/2 (as α is not a zero of Ek). But the left hand

side of this equation is either
(
1+i

√
11

2

)k
or (1 + i

√
2)k, which are never rational by [17, Theorem

3.7]. Hence α is not a zero of E+
k,3.

Case p = 5: From Theorem 1.1, the possible CM zeros are i
√
5

5 , −1+i
√
19

10 , −1+2i
5 , −2+i

5 , −3+i
√
11

10 ,
and −5+i

√
5

10 . Notice that for α = −1+i
√
19

10 , −1+2i
5 , −3+i

√
11

10 ,(
0 −1
1 1

)(
−1 + i

√
19

2

)
=

−1 + i
√
19

10
,

(
0 −1
1 2

)
(−1 + 2i) =

−1 + 2i

5
,

(
0 −1
1 3

)(
−3 + i

√
11

2

)
=

−3 + i
√
11

10
.

Here, α can only be a zero of E+
k,5 if (5cα + d)k = −5k/2. The left hand side of the equation is

either
(
1+i

√
19

2

)k
, (1 + 2i)k, or

(
3+i

√
11

2

)k
, which are never rational by [17, Theorem 3.7]. Hence α

is not a zero of E+
k,5.

Case p = 7: From Theorem 1.1, the possible CM zeros are i
√
7

7 , −1+i
√
7

14 , −6+i
√
6

14 , −5+i
√
3

14 ,
−4+2i

√
3

14 , −3+i
√
19

14 , −2+2i
√
6

14 , and −1+3i
√
3

14 . Notice that for α = −1+3i
√
3

14 , −1+i
√
6

7 , −3+i
√
19

14 , −2+i
√
3

7 , −6+i
√
6

14 ,(
0 −1
1 1

)(
−1 + 3i

√
3

2

)
=

−1 + 3i
√
3

14
,

(
0 −1
1 2

)(
−1 + i

√
6
)
=

−1 + i
√
6

7
,

(
0 −1
1 3

)(
−3 + i

√
19

2

)
=

−3 + i
√
19

14
,

(
0 −1
1 4

)(
−2 + i

√
3
)
=

−2 + i
√
3

7
,

(
−1 −3
2 5

)(
−6 + i

√
6

2

)
=

−6 + i
√
6

14
.

Here, α can only be a zero of E+
k,7 if (7cα+ d)k = −7k/2. The left hand side of this equation is one

of
(
1+3i

√
3

2

)k
,
(
1 + i

√
6
)k,
(
3+i

√
19

2

)k
, (2 + 3i)k, or (−1 + i

√
6)k, which are never rational by [17,

Theorem 3.7]. Hence α is not a zero of E+
k,7. �

5. Modular forms with zeros on the boundary of F

We next consider level one modular forms with zeros all lying on the boundary of F . The
following theorem follows immediately from Proposition 1.4 (with level N = 1) and Lemma 2.2
(with its corresponding table).

Theorem 1.2. Let f be a modular form of weight k for SL2(Z) with rational Fourier coefficients
at infinity. Suppose that all the zeros of f in F lie on the boundary of F . Then aside from the
finitely many CM points in E , every zero of f in F is transcendental.

11



Here, E denotes the set of CM points with class group of exponent dividing 2 and discriminant
odd or −4. Conditional on the non-existence of Siegel zeros, E is precisely the set of 109 CM
points with discriminants given in the table from Lemma 2.2. Unconditionally, E could possibly
also include the CM points arising from one additional fundamental discriminant.

One example of modular forms to which we can apply this theorem is the cuspidal projection

∆k,` := EkE` − Ek+`

of weight k+ `. In [22] and [27], Reitzes-Vulakh-Young and Xue-Zhu showed that for k, ` ≥ 4 with
k + ` 6= 8, 10, 14, all the zeros of ∆k,` lie on the boundary of F . (Note that this covers all possible
cases; when k + ` = 8, 10, 14, ∆k,` is identically 0.) Hence we can apply Theorem 1.2 in particular
to these cuspidal projections ∆k,`.

Corollary 5.1. Let k, ` ≥ 4 be even with k + ` 6= 8, 10, 14. Then aside from the finitely many CM
points in E (see Theorem 1.2), every zero of ∆k,` in F is transcendental.

We speculate that, other than ρ and i, none of the zeros of ∆k,` are transcendental. We formulate
this in the following conjecture.

Conjecture 5.2. Fix k, ` ≥ 4 such that k + ` 6= 8, 10, 14. Then aside from ρ and i, every zero of
∆k,` in F is transcendental.

Assuming non-existence of Siegel zeros, it turns out that Conjecture 5.2 would also follow from
the irreducibility of the j-invariant polynomials for ∆k,`.

Conjecture 5.3. For any k, ` ≥ 4, the j-invariant polynomial of ∆k,` is either constant or irre-
ducible over Q.

We have verified Conjectures 5.2 and 5.3 computationally for all k+` ≤ 1000 [23]. For z0 ∈ CMD,
the minimal polynomial of j(z0) is precisely the Hilbert class polynomial (sometimes known as the
ring class polynomial) of discriminant D [5, Chapter 11, Section D]. Hence to find the algebraic
zeros of f , one just needs compute the Hilbert class polynomials dividing the j invariant polynomial
for f . This strategy is what made all of our computations possible.

Finally, we note why Conjecture 5.3 implies Conjecture 5.2 (assuming the non-existence of Siegel
zeros). Under these assumptions, it turns that any counterexample to Conjecture 5.2 would neces-
sarily have weight k+ ` ≤ 122. And we have already verified Conjecture 5.2 for these finitely many
cases. Suppose that z0 ∈ E \{ρ, i}, say with discriminant D, is such that ∆k,`(z0) = 0. By the
above paragraph, this means that the Hilbert class polynomial for D, HCPD, divides the j-invariant
polynomial for ∆k,`, P∆k,`

. Assuming Conjecture 5.3, this would then mean that, in particular,
degHCPD = degP∆k,`

. However, we have the upper bound degHCPD = |Cl(OD)| ≤ 8 by Lemma
2.2, and the lower bound degP∆k,`

= n(k + `) − 1 ≥ k+`−14
12 − 1 by Lemma 2.1. Comparing these

two bounds, we see that degHCPD = degP∆k,`
can only occur for k + ` ≤ 122, as claimed.
12



Note that in our application of Lemma 2.1, we used the fact that ord∞(∆k,`) = 1. This follows
immediately from the fact that the q-coefficient of ∆k,`, 2

(
k+`
Bk+`

− k
Bk

− `
B`

)
, never vanishes for

k + ` 6= 8, 10, 14 [7, paragraph following Conjecture 7.1].

6. Modular forms in the Miller basis

Recall that for 1 ≤ m ≤ n(k), the weight k, level one modular form

gk,m(z) = qm +O(qn(k)+1)

is uniquely determined. Furthermore, {gk,m}n(k)m=1 forms a basis for Sk, called the Miller basis. In
this last section, we show transcendence of zeros for the first 2/9 of the Miller basis, as well as the
last T forms in the Miller basis (for any given value of T ≥ 1).

Theorem 1.3. For k ≥ 4 and n(k) := dimSk, let {gk,m}n(k)m=1 denote the Miller basis for Sk.
(1) For 1 ≤ m < 2n(k)−19

9 , other than ρ and i, the zeros of gk,m are all transcendental.
(2) Fix any T ≥ 1. Then for sufficiently large k, other than ρ and i, the zeros of the last T forms
in the Miller basis gk,n(k)−T+1, . . . , gk,n(k) are all transcendental.

Proof. (1). By [21, Theorem 4.1], all the zeros of these gk,m lie on the arc A(1). Thus by Theorem
1.1, all the zeros other than ρ and i are transcendental.

(2). Fix T ≥ 1. Then for k ≥ 4, let fk := gk,n(k)−T+1 denote the T th-to-last form in the Miller
basis for Sk. It suffices to show the desired result for this fk (then one can choose a sufficiently
large k such that the result holds for the finitely many 1 ≤ T ′ ≤ T ).

By [24, Theorem 1.1], the T non-trivial zeros {zk,j}1≤j≤T of fk in F satisfy

zk,j =
i

2π
log(2kwT,j) +O

(
1

k

)
where the {wT,j}1≤j≤T denote the inverses of the roots of

∑T
n=0

tn

n! . In particular, this means that
Im(zj) → ∞ as k → ∞, uniformly over 1 ≤ j ≤ T .

On the other hand, observe that there are only a finite number of possible non-transcendental
zeros for the fk. Suppose that a non-trivial zero zj in F is not transcendental. Then, as f has
rational Fourier coefficients, by Proposition 1.4, zj ∈ CMD for some D and furthermore all points
in CMD are zeros of f . As f has exactly T non-trivial zeros in F , this means that we must have
|Cl(OD)| ≤ T . However, there are only finitely many such discriminants D, and so only finitely
many possible non-transcendental zeros for the fk. In particular, the imaginary part of these
possible non-transcendental zeros is bounded.

Hence for sufficiently large k, every zero of fk will be transcendental. �

We note here that part (2) of this theorem in fact holds for any rational linear combination of
the last T forms in the Miller basis; see [24, Theorem 1.1]. We state the theorem as above for
simplicity.
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Inspired by Theorem 1.3, we finish with the following conjecture. We have verified this conjecture
for all weights k ≤ 3000 [23].

Conjecture 6.1. Let f be any form in the Miller basis for Sk. Then other than ρ and i, every
zero of f is transcendental.
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