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Abstract. In this paper, we study the question of whether or not sets of natural numbers

with a given multiplicative structure are guaranteed to have a density. We consider several

different types of multiplicative structure (multiplicatively closed sets, sets of multiples,

saturated sets, and multiplicatively closed saturated sets), and several different different

types of density (natural density, logarithmic density, and multiplicative density). Many of

these cases have been studied before; in this paper, we finish off the problem, answering the

above question in every case.

1. Introduction

In this paper, we study the titular question: Are sets of natural numbers with a given

multiplicative structure are guaranteed to have a density? We answer this question for

four different types of multiplicative structure (multiplicatively closed sets, sets of multiples,

saturated sets, and multiplicatively closed saturated sets), and three different types of density

(natural density, logarithmic density, and multiplicative density).

The investigation of this question started in 1934 when Chowla conjectured that any

set of multiples would have a natural density [3]. This conjecture, however, turns out to

not be true; Besicovitch provided a counterexample the next year [2]. Nevertheless, many

interesting problems remained concerning the density of sets of multiples. These problems

have turned out to be of great interest, with a rich history of research over the years (e.g.

see [8, 12, 14] for the state-of-the-art at the end of the 20’th century). Erdős, especially, took

interest in these problems (e.g. see [4, 5, 6, 7, 8, 9, 10]), and along with Davenport proved

the most well-known result in the area: the Davenport-Erdős theorem states that sets of

multiples are guaranteed to have an logarithmic density [4].

As one can see from the summary above, most of the research so far in this area has

been focused on sets of multiples. In this paper, our goal is to extend this study to other

multiplicative structures. In particular, we show the following theorem.
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Theorem 1.1. The following table answers the titular question: Are sets of natural numbers

with a given multiplicative structure guaranteed to have a density?

Natural

density

Logarithmic

density

Multiplicative

density

Multiplicatively closed sets No No No

Sets of multiples No Yes Yes

Saturated sets No Yes Yes

Multiplicatively closed

saturated sets

Yes Yes Yes

We have stated the entire table here for context. However, note that the main novelty

of this paper comes from the problems regarding multiplicatively closed sets. The problems

from most of the rest of the table have either already been studied in previous works, or

quickly follow from known results.

The results of Theorem 1.1 for multiplicatively closed sets are quite surprising, at least

to the author. We were expecting the opposite result, partially because of the close analogy

with the Davenport-Erdős theorem. In the May 2025 preprint of [13], we had even formally

stated (the incorrect) Conjecture 7.3: that every multiplicatively closed set B ⊆ N has a

logarithmic density.

2. Basic Definitions

Recall that a set B ⊆ N ismultiplicatively closed if a, b ∈ B =⇒ ab ∈ B. Similarly, B ⊆ N
is called a set of multiples if b ∈ B, n ∈ N =⇒ nb ∈ B. Lastly, a set B ⊆ N is saturated

if b ∈ B =⇒ a ∈ B for all a | b. Note that the four multiplicative structures we are

considering in this paper make up all the nontrivial combinations of these definitions (since

saturated sets of multiples are either ∅ or N, and sets of multiples are already multiplicatively

closed). Also note that saturated sets are precisely the complements of sets of multiples.

Next, recall that the natural density of a set B ⊆ N is defined as

d(B) := lim
x→∞

1

x

∑
n≤x

1B(n),

where 1B denotes the indicator function 1B(n) := 1n∈B. Similarly, we define the logarithmic

density of a set B ⊆ N to be

δ(B) := lim
x→∞

1

log x

∑
n≤x

1

n
1B(n).
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Lastly, we define the multiplicative density of a set B ⊆ N to be

∆(B) := lim
y→∞

∑
n∈Ny

1

n

−1 ∑
n∈Ny

1

n
1B(n),

where Ny denotes the set of all y-smooth numbers (i.e. the natural numbers n such that

p ≤ y for all primes p | n.)
Of course, the above limits are not guaranteed to exist in general. So we also define

the upper and lower densities in each case to be the corresponding lim sup and lim inf,

respectively. For example, the upper and lower natural densities are defined as

d(B) := lim sup
x→∞

1

x

∑
n≤x

1B(n) and d(B) := lim inf
x→∞

1

x

∑
n≤x

1B(n),

and the natural density d(B) exists if and only if d(B) = d(B).

We also take note here of the well-known inequality d(B) ≤ δ(B) ≤ δ(B) ≤ d(B) [1,

Corollary 1.12]. In particular, this inequality means that if the set B has a natural density,

then it necessarily also has a logarithmic density (with the same value).

3. Sets of multiples

In 1935, Besicovitch managed to construct a set of multiples without a natural density

[2]. For the convenience of the reader, we repeat Besicovitch’s construction here (modified

slightly for simplicity).

Proposition 3.1. There exists a set of multiples without a natural density.

Proof. For any set B ⊆ N, let d(B, x) := 1
x
#{n ≤ x : n ∈ B}. (So that the upper and

lower natural densities of B are d(B) := lim supx→∞ d(B, x) and d(B) := lim infx→∞ d(B, x),

respectively.)

Then for k ≥ 1, let Rk denote the range of integers [2k, 2k+1), and let NRk denote the set

of all multiples of elements of Rk. Besicovitch showed in [2, Theorem 1] that the d(NRk)

all exist, and that lim inf d(NRk) = 0. Then observe that 1NRk
(n) is 2k+1!-periodic (i.e.

n ∈ NRk if and only if n + 2k+1! ∈ NRk). Hence setting dk := d(NRk, 2
k+1!), we have that

d(NRk, x) = dk for each x a multiple of 2k+1!. Note this also implies that dk = d(NRk).

Now, choose indices k1 < k2 < k3 < . . . large enough such that

dk1 ≤
1

8

dk2 ≤
1

16
and 2k2 > 2k1+1!
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dk3 ≤
1

32
and 2k3 > 2k2+1!

...

Then let B be the set of multiples B := N(Rk1 ∪ Rk2 ∪ . . .), and we will show that B does

not have a density.

For i ≥ 1, consider xi = 2ki+1. Since Rki = [2ki , 2ki+1) ⊆ B, we have that d(B, xi) ≥ 1
2
for

all i and so d(B) ≥ 1
2
. Alternatively, for i ≥ 1, consider xi = 2ki+1!. Note that

B = NRk1 ∪ NRk2 ∪ . . . ,

so d(B, xi) ≤ d(NRk1 , xi) + d(NRk2 , xi) + . . .

Now, for all j ≥ i + 1, we have 2kj > xi, so d(NRkj , xi) = 0 And for all j ≤ i, we have that

xi is a multiple of 2kj+1!, so d(NRkj , xi) = dkj . This means that

d(B, xi) ≤ d(NRk1 , xi) + d(NRk2 , xi) + . . .

= dk1 + . . .+ dki

≤ 1

8
+ . . .+

1

2i+2

≤ 1

4

for all i and so d(B) ≤ 1
4
.

Thus d(B) < d(B), and so B does not have a density. □

In 1937 [4], Davenport and Erdős proved what is now known as the Davenport-Erdős

theorem: that every set of multiples has a logarithmic density. We give a brief sketch of the

argument they used.

One can write any set of multiples B as B = NA for some set of generators A. Then write

A = {a1, a2, . . .} (in increasing order) and define

A1 =
1

a1

A2 =
1

a2
− 1

[a1, a2]

...

Ak =
1

ak
−

∑
j<k

1

[aj, ak]
+

∑
i<j<k

1

[ai, aj, ak]
− . . . ,

where [c1, c2, . . . , cn] := lcm(c1, c2, . . . , cn).
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Using an inclusion-exclusion argument, one can see that Ak represents the density of the

natural numbers divisible by ak, but not by any of a1, . . . ak−1. Hence it is reasonable to

guess that the (logarithmic) density of B = NA should be A0 :=
∑

k≥1Ak.

To prove this guess, one would need to show that the growth rate of
∑

n≤x
1
n
1B(n) is

A0 log x + o(log x). Davenport and Erdős were able to compute this growth rate using the

Dirichlet series L-function for 1B:

L(1B, s) :=
∑
n≥1

1B(n)

ns
.

In particular, by a Tauberian theorem (Wiener-Ikehara), the growth rate of
∑

n≤x
1B(n)

n
can

be determined by calculating the residue at the s = 1 pole of L(1B, s).

To compute this residue, Davenport and Erdos defined

Ak(s) :=
1

ask
−

∑
j<k

1

[aj, ak]s
+

∑
i<j<k

1

[ai, aj, ak]s
− . . .

A0(s) :=
∑
k≥1

Ak(s)

(so that A0(1) = A0). Then with these definitions, one can see that

L(1B, s) = ζ(s)A0(s),

at least where the corresponding Dirichlet series converge. After some additional work,

Davenport and Erdős were then able to use this formula for L(1B, s) to show that the s = 1

residue of L(1B, s) is A0(1) = A0. This implies that the logarithmic density of B = NA is

A0, as predicted.

Fourteen years later in 1951 [5], Davenport and Erdős further showed that every set of

multiples also has a multiplicative density, equal to its logarithmic density. Their proof in

this paper was more direct, proceeding by a careful analysis of the y-smooth elements of B

(and estimating their contribution to the corresponding indicator sums).

Putting all of these results together verifies the second row of the table in Theorem 1.1.

Additionally, note that for any set B ⊆ N; d(B) = 1 − d(Bc), δ(B) = 1 − δ(Bc), and

∆(B) = 1−∆(Bc). This means that a set B has a natural/logarithmic/multiplicative density

if and only if its complement has a natural/logarithmic/multiplicative density. Hence since

saturated sets are precisely the complements of sets of multiples, the above results also imply

the third row of the table in Theorem 1.1.
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4. Multiplicatively closed saturated sets

Let B ⊆ N be multiplicatively closed and saturated. It is straightforward to see this means

that 1B is a completely multiplicative function. The indicator 1B being multiplicative then

makes this multiplicative structure the easiest to study by far. Note that the existence of

logarithmic and multiplicative densities follows from the previous section. However, one can

also see the existence of each type of density directly.

Because 1B is multiplicative, we have directly from the Halasz mean value theorem [15, 11]

that 1B has a mean value. Hence B has a natural (and also a logarithmic) density.

Next, write

αy =
∑
n≥1

1

n
1Ny(n) and βy =

∑
n≥1

1

n
1Ny(n)1B(n),

so that ∆(B) = limy→∞
βy

αy
. Then since 1Ny and 1B are both completely multiplicative,

observe that

αy =
∏
p

∑
r≥0

1

pr
1Ny(p

r) =
∏
p≤y

(
1− 1

p

)−1

and βy =
∏
p

∑
r≥0

1

pr
1Ny(p

r)1B(p
r) =

∏
p≤y,p∈B

(
1− 1

p

)−1

.

Hence βy

αy
is a decreasing function in y (and is bounded below by 0), and so ∆(B) = limy→∞

βy

αy

necessarily exists.

These arguments verify the third row of the table in Theorem 1.1.

5. Multiplicatively closed sets

In this section, we first show that multiplicatively closed sets are not guaranteed to have

a multiplicative density. In fact, we construct an example in the most extreme case; a

multiplicatively closed set B with ∆(B) = 0 and ∆(B) = 1.

Proposition 5.1. There exists a multiplicatively closed set with lower multiplicative density

0 and upper multiplicative density 1.

Proof. For a set of primes P , let BP :=
⋃
· p∈P pNp. Note that pNp here is precisely the set of

all natural numbers whose largest prime divisor is p. Also note that BP is multiplicatively

closed: a, b ∈ BP means that a ∈ pNp, b ∈ qNq for p, q ∈ P , which then implies that

ab ∈ p′Np′ ⊆ BP for p′ = max(p, q).
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Now, write

αy =
∑
n∈Ny

1

n
and βy =

∑
n∈Ny

1

n
1BP

(n).

Then we will construct P in such a way so that ∆(BP ) = lim infy→∞
βy

αy
is 0,

and ∆(BP ) = lim supy→∞
βy

αy
is 1.

Observe that

αy =
∑
n∈Ny

1

n
=

∏
p≤y

(
1− 1

p

)−1

,

and βy =
∑
n∈Ny

1

n
1BP

(n) =
∑

n∈BP∩Ny

1

n
=

∑
p≤y, p∈P

∑
n∈pNp

1

n

=
∑

p≤y, p∈P

1

p

∑
n∈Np

1

n
=

∑
p≤y, p∈P

1

p
αp.

Then from these identities, it is easy to see that for all primes p,

αp =

(
1− 1

p

)−1

αp−1,

and βp = βp−1 + 1P (p)
1

p
αp.

Hence we can compute that

βp

αp

− βp−1

αp−1

=



βp−1(
1− 1

p

)−1

αp−1

− βp−1

αp−1

= −1

p

βp−1

αp−1

if p /∈ P,

βp−1 +
1
p
αp(

1− 1
p

)−1

αp−1

− βp−1

αp−1

=
1

p

(
1− βp−1

αp−1

)
if p ∈ P.

We now construct P by processing the primes p in increasing order and choosing whether

or not to include each p in P . Note that at each prime p, we will either decrease the quotient
βy

αy
by 1

p

βp−1

αp−1
(by selecting p /∈ P ), or increase it by 1

p

(
1− βp−1

αp−1

)
(by selecting p ∈ P ).

We divide this selection process into stages k = 1, 2, 3, . . ..

• At each odd stage k, select primes p /∈ P until βy

αy
≤ 1

k
.

◦ This is possible because while βy

αy
> 1

k
, each choice of p /∈ P decreases the

quotient βy

αy
by 1

p

βp−1

αp−1
≥ 1

pk
(and

∑
p≥p0

1
pk

diverges).

• At each even stage k, select primes p ∈ P until βy

αy
≥ 1− 1

k
.

◦ This is possible because while βy

αy
< 1− 1

k
, each choice of p ∈ P increases the

quotient βy

αy
by 1

p

(
1− βp−1

αp−1

)
≥ 1

pk
(and

∑
p≥p0

1
pk

diverges).
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Hence by construction,

∆(BP ) = lim inf
y→∞

βy

αy

≤ lim inf
odd k→∞

1

k
= 0

and ∆(BP ) = lim sup
y→∞

βy

αy

≥ lim sup
even k→∞

1− 1

k
= 1,

as desired. □

The same multiplicatively closed set from Proposition 5.1 also turns out to not have a

logarithmic or natural density. This fact follows from the following lemma.

Lemma 5.2. Let γ denote Euler’s constant. Then δ(B) ≤ eγ∆(B) for all B ⊆ N.

Proof. Write

αy =
∑
n∈Ny

1

n
=

∏
p≤y

(
1− 1

p

)−1

and βy =
∑
n∈Ny

1

n
1BP

(n),

so that ∆(B) = lim infy→∞
βy

αy
.

We have by Merten’s theorem that αy ∼ eγ log y. Hence

eγ∆(B) = lim inf
y→∞

βy

log y
= lim inf

y→∞

∑
n∈Ny

1

n
1B(y)

≥ lim inf
y→∞

∑
n≤y

1

n
1B(y) = δ(B),

as desired. □

Let B ⊆ N be the multiplicatively closed set from Proposition 5.1. Then applying Lemma

5.2, we obtain that

d(B) ≤ δ(B) ≤ eγ∆(B) = 0

and d(B) ≥ δ(B) = 1− δ(Bc) ≥ 1− eγ∆(Bc) = 1.

Thus B does not have a multiplicative, logarithmic, or natural density. This verifies the first

row of the table in Theorem 1.1.
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