ARE SETS WITH A GIVEN MULTIPLICATIVE STRUCTURE
GUARANTEED TO HAVE A DENSITY?

ERICK ROSS

ABSTRACT. In this paper, we study the question of whether or not sets of natural numbers
with a given multiplicative structure are guaranteed to have a density. We consider several
different types of multiplicative structure (multiplicatively closed sets, sets of multiples,
saturated sets, and multiplicatively closed saturated sets), and several different different
types of density (natural density, logarithmic density, and multiplicative density). Many of
these cases have been studied before; in this paper, we finish off the problem, answering the

above question in every case.

1. INTRODUCTION

In this paper, we study the titular question: Are sets of natural numbers with a given
multiplicative structure are guaranteed to have a density? We answer this question for
four different types of multiplicative structure (multiplicatively closed sets, sets of multiples,
saturated sets, and multiplicatively closed saturated sets), and three different types of density

(natural density, logarithmic density, and multiplicative density).

The investigation of this question started in 1934 when Chowla conjectured that any
set of multiples would have a natural density [3]. This conjecture, however, turns out to
not be true; Besicovitch provided a counterexample the next year [2]. Nevertheless, many
interesting problems remained concerning the density of sets of multiples. These problems
have turned out to be of great interest, with a rich history of research over the years (e.g.
see [8, 12, 14] for the state-of-the-art at the end of the 20’th century). Erdés, especially, took
interest in these problems (e.g. see [4, 5, 6, 7, 8, 9, 10]), and along with Davenport proved
the most well-known result in the area: the Davenport-Erdés theorem states that sets of

multiples are guaranteed to have an logarithmic density [4].

As one can see from the summary above, most of the research so far in this area has
been focused on sets of multiples. In this paper, our goal is to extend this study to other

multiplicative structures. In particular, we show the following theorem.
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Theorem 1.1. The following table answers the titular question: Are sets of natural numbers

with a given multiplicative structure quaranteed to have a density?

Natural Logarithmic — Multiplicative
density density density
Multiplicatively closed sets No No No
Sets of multiples No Yes Yes
Saturated sets No Yes Yes
Multiplicatively closed Yes Yes Yes
saturated sets

We have stated the entire table here for context. However, note that the main novelty
of this paper comes from the problems regarding multiplicatively closed sets. The problems
from most of the rest of the table have either already been studied in previous works, or

quickly follow from known results.

The results of Theorem 1.1 for multiplicatively closed sets are quite surprising, at least
to the author. We were expecting the opposite result, partially because of the close analogy
with the Davenport-Erdds theorem. In the May 2025 preprint of [13], we had even formally
stated (the incorrect) Conjecture 7.3: that every multiplicatively closed set B C N has a

logarithmic density.

2. BASIC DEFINITIONS

Recall that a set B C N is multiplicatively closed if a,b € B = ab € B. Similarly, B C N
is called a set of multiples if b € B,n € N = nb € B. Lastly, a set B C N is saturated
if b e B = a € Bforalla | b. Note that the four multiplicative structures we are
considering in this paper make up all the nontrivial combinations of these definitions (since
saturated sets of multiples are either @ or N, and sets of multiples are already multiplicatively

closed). Also note that saturated sets are precisely the complements of sets of multiples.

Next, recall that the natural density of a set B C N is defined as

A(B) = lim 3" a(n),

where 15 denotes the indicator function 1g(n) := 1,cp. Similarly, we define the logarithmic
density of a set B C N to be
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Lastly, we define the multiplicative density of a set B C N to be
-1
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where N, denotes the set of all y-smooth numbers (i.e. the natural numbers n such that
p <y for all primes p | n.)

Of course, the above limits are not guaranteed to exist in general. So we also define
the upper and lower densities in each case to be the corresponding limsup and liminf,

respectively. For example, the upper and lower natural densities are defined as

1 1
d(B) := h?j}ipgng(n) and  d(B):= liggfgnqujg(n),

and the natural density d(B) exists if and only if d(B) = d(B).
We also take note here of the well-known inequality d(B) < §(B) < 6(B) < d(B) [1,
Corollary 1.12]. In particular, this inequality means that if the set B has a natural density,

then it necessarily also has a logarithmic density (with the same value).

3. SETS OF MULTIPLES

In 1935, Besicovitch managed to construct a set of multiples without a natural density
[2]. For the convenience of the reader, we repeat Besicovitch’s construction here (modified

slightly for simplicity).
Proposition 3.1. There exists a set of multiples without a natural density.

Proof. For any set B C N, let d(B,z) := %#{n <z :n € B}. (So that the upper and
lower natural densities of B are d(B) := limsup,_,. d(B, ) and d(B) := liminf, . d(B, ),
respectively.)

Then for k > 1, let R, denote the range of integers [2%,2"1) and let NR; denote the set
of all multiples of elements of Rj. Besicovitch showed in [2, Theorem 1] that the d(NRy)
all exist, and that liminf d(NR;) = 0. Then observe that lyg,(n) is 2™ l-periodic (i.e.
n € NRy if and only if n + 2¥11 € NRy). Hence setting dy, := d(NRy, 25T!), we have that
d(NRy, z) = dj, for each z a multiple of 2*711. Note this also implies that dy = d(NRy).

Now, choose indices k1 < ko < k3 < ... large enough such that

di, <

o |

1
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di, < 3 and 2M > k2l

Then let B be the set of multiples B := N(Ry, U Rg, U ...), and we will show that B does

not have a density.
For i > 1, consider z; = 2%*!. Since Ry, = [2%,2F+1) C B, we have that d(B,z;) > 1 for
all i and so d(B) > 1. Alternatively, for i > 1, consider x; = 2"*!l. Note that

B =NRy, UNRy, U...,
so d(B,z;) < d(NRy,,z;) + d(NRy,, x;) +

Now, for all j > i + 1, we have 2% > x;, so d(NRy;, z;) = 0 And for all j <, we have that
x; is a multiple of 2871 so d(NRy,, ;) = dy,. This means that

=y, +...+dy,
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for all i and so d(B) < 1.
Thus d(B) < d(B), and so B does not have a density. O

In 1937 [4], Davenport and Erdds proved what is now known as the Davenport-Erdds
theorem: that every set of multiples has a logarithmic density. We give a brief sketch of the
argument they used.

One can write any set of multiples B as B = NA for some set of generators A. Then write

A = {ay,ay,...} (in increasing order) and define

1
A= —
ai
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where [c1, o, ..., ¢ = lem(ey, o, ..y ).



Using an inclusion-exclusion argument, one can see that Ay represents the density of the
natural numbers divisible by a;, but not by any of aq,...a;_1. Hence it is reasonable to
guess that the (logarithmic) density of B = NA should be Ay := ;| Ay
L1p(n) is

Aplog x 4 o(log x). Davenport and Erdés were able to compute this growth rate using the

To prove this guess, one would need to show that the growth rate of >

n<x

Dirichlet series L-function for 1p:

L(1p,s):= Z 1B<n).

ns
n>1

1p(n)
n<r n

In particular, by a Tauberian theorem (Wiener-Ikehara), the growth rate of can
be determined by calculating the residue at the s = 1 pole of L(1g,s).

To compute this residue, Davenport and Erdos defined

1 1 !
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i<k 1<j<k

Ag(s) =) Ax(s)

k>1

(so that Ag(1) = Ap). Then with these definitions, one can see that
L(1p,5) = C(s)Ao(s),

at least where the corresponding Dirichlet series converge. After some additional work,
Davenport and Erdds were then able to use this formula for L(1g, s) to show that the s =1
residue of L(1g,s) is Ag(1) = Ag. This implies that the logarithmic density of B = NA is
Ag, as predicted.

Fourteen years later in 1951 [5], Davenport and Erdés further showed that every set of
multiples also has a multiplicative density, equal to its logarithmic density. Their proof in
this paper was more direct, proceeding by a careful analysis of the y-smooth elements of B
(and estimating their contribution to the corresponding indicator sums).

Putting all of these results together verifies the second row of the table in Theorem 1.1.

Additionally, note that for any set B C N; d(B) = 1 — d(B°), §(B) = 1 — §(B°), and
A(B) = 1—-A(B°). This means that a set B has a natural/logarithmic/multiplicative density
if and only if its complement has a natural /logarithmic/multiplicative density. Hence since

saturated sets are precisely the complements of sets of multiples, the above results also imply
the third row of the table in Theorem 1.1.



4. MULTIPLICATIVELY CLOSED SATURATED SETS

Let B C N be multiplicatively closed and saturated. It is straightforward to see this means
that 1p is a completely multiplicative function. The indicator 1g being multiplicative then
makes this multiplicative structure the easiest to study by far. Note that the existence of
logarithmic and multiplicative densities follows from the previous section. However, one can

also see the existence of each type of density directly.

Because 15 is multiplicative, we have directly from the Halasz mean value theorem [15, 11]

that 15 has a mean value. Hence B has a natural (and also a logarithmic) density.
Next, write

=3l and Gy =37 g () 1s00)

n>1 n>1

so that A(B) = lim,_, g—z Then since 1y, and 1p are both completely multiplicative,
observe that
1 T
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and S, = HZElNy(PT)lB(PT) = 11 (1 - ]3) :
p r>0 p<y,pEB

By

o s a decreasing function in y (and is bounded below by 0), and so A(B) = lim,_,« By

Qy

Hence

necessarily exists.

These arguments verify the third row of the table in Theorem 1.1.

5. MULTIPLICATIVELY CLOSED SETS

In this section, we first show that multiplicatively closed sets are not guaranteed to have
a multiplicative density. In fact, we construct an example in the most extreme case; a
multiplicatively closed set B with A(B) =0 and A(B) = 1.

Proposition 5.1. There exists a multiplicatively closed set with lower multiplicative density

0 and upper multiplicative density 1.

Proof. For a set of primes P, let Bp := Upe pPN,. Note that pN,, here is precisely the set of
all natural numbers whose largest prime divisor is p. Also note that Bp is multiplicatively
closed: a,b € Bp means that a € pN,, b € ¢gN, for p,¢ € P, which then implies that
ab € p’N,, C Bp for p’ = max(p, q).



Now, write
1

Qay = Z % and By = Z ElBP(n).

neN, neENy
Then we will construct P in such a way so that A(Bp) = liminf, , 5—7; is 0,
and A(Bp) = limsup,,_, o is 1.
Observe that
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Then from these identities, it is easy to see that for all primes p,
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We now construct P by processing the primes p in increasing order and choosing whether
or not to include each p in P. Note that at each prime p, we will either decrease the quotient
g—z by ;SP L (by selecting p ¢ P), or increase it by % <1 6’; 1) (by selecting p € P).

We divide this selection process into stages k =1,2,3,....

e At each odd stage k, select primes p ¢ P until g—z < %
o This is possible because while S—Z > %, each choice of p ¢ P decreases the
quotient - ﬂy by & 16’7 - - > ﬁ (and > o ﬁ diverges).
e At each even stage k Select primes p € P until B—y >1-— l

o This is possible because while ’8 R each ch01ce of p € P increases the

B Bp—
quotient 2 by 2 - ( - f) > p—k (and Zp>p -5 diverges).

—1
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Hence by construction,

1
A(Bp) = liminf& < liminf — =0
Y=o Q odd k—o0

_ 1
and A(Bp) = limsup@ > limsup 1 — — =1,

y—oo Oy even k—00 k

as desired. O

The same multiplicatively closed set from Proposition 5.1 also turns out to not have a

logarithmic or natural density. This fact follows from the following lemma.
Lemma 5.2. Let v denote Euler’s constant. Then §(B) < eYA(B) for all B C N.

Proof. Write
1 I 1
o= L-11 (1_5) and 8= 3 M)
nENy Py
so that A(B) = liminf, g—z
We have by Merten’s theorem that o, ~ €7 logy. Hence

1
¢"A(B) = liminf by = liminf Y ~ ~15(y)
y—oo logy y—00 neNyn

1
> liminf -1 =4(B
= 1;r_1}(1)£1 ;yn B(y) _( ),
as desired. O

Let B C N be the multiplicatively closed set from Proposition 5.1. Then applying Lemma
5.2, we obtain that

Thus B does not have a multiplicative, logarithmic, or natural density. This verifies the first

row of the table in Theorem 1.1.

REFERENCES

[1] Ralph Alexander. Density and multiplicative structure of sets of integers. Acta Arith., 12:321-332,
1966/67.

[2] A. S. Besicovitch. On the density of certain sequences of integers. Math. Ann., 110(1):336-341, 1935.

[3] S. Chowla. On abundant numbers. J. Indian Math. Soc., 4:41-44, 1934.

[4] H. Davenport and P. Erdés. On sequences of positive integers. Acta Arith., 2, 1937.
8



[5] H. Davenport and P. Erdds. On sequences of positive integers. J. Indian Math. Soc. (N.S.), 15:19-24,
1951.
[6] P. Erdés. A Generalization of a Theorem of Besicovitch. J. London Math. Soc., 11(2):92-98, 1936.
[7] P. Erdés. On the density of some sequences of integers. Bull. Amer. Math. Soc., 54:685-692, 1948.
[8] P. Erdés, R. R. Hall, and G. Tenenbaum. On the densities of sets of multiples. J. Reine Angew. Math.,
454:119-141, 1994.
[9] Paul Erdés. On the Density of the Abundant Numbers. J. London Math. Soc., 9(4):278-282, 1934.
[10] Paul Erdos. Note on Sequences of Integers No One of Which is Divisible By Any Other. J. London
Math. Soc., 10(2):126-128, 1935.
[11] G. Haldsz. iiber die Mittelwerte multiplikativer zahlentheoretischer Funktionen. Acta Math. Acad. Sci.
Hungar., 19:365-403, 1968.
[12] Richard R. Hall. Sets of multiples, volume 118 of Cambridge Tracts in Mathematics. Cambridge Uni-
versity Press, Cambridge, 1996.
[13] Erick Ross. Cramér a-random primes and the fundamental theorem of arithmetic. Submitted, 2025.
[14] Imre Z. Ruzsa. Erdés and the integers. J. Number Theory, 79(1):115-163, 1999.
[15] E. Wirsing. Das asymptotische Verhalten von Summen iiber multiplikative Funktionen. II. Acta Math.
Acad. Sci. Hungar., 18:411-467, 1967.

(E. Ross) SCHOOL OF MATHEMATICAL AND STATISTICAL SCIENCES, CLEMSON UNIVERSITY, CLEMSON,
SC

Email address: erickjohnross@gmail.com



	1. Introduction
	2. Basic Definitions
	3. Sets of multiples
	4. Multiplicatively closed saturated sets
	5. Multiplicatively closed sets
	References

