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Abstract. Define the set of Cramér α-random primes, where N is chosen to be a Cramér

α-random prime with probability 1/ logα N . At α = 1, this is the classical set of Cramér ran-

dom primes, which model the actual primes. Now, the Fundamental Theorem of Arithmetic

states that every natural number can be written uniquely as a product of primes (allowing

multiplicity). In this paper, we investigate how close the Cramér α-random primes come to

satisfying this property. Along the way, we also prove an analog of the Hardy-Ramanujan

inequality for the classical Cramér random primes.

1. Introduction

The Prime Number Theorem states that the number of primes less than x grows like

#{p ≤ x prime} ∼ Li(x) :=

∫ x

2

1

log t
dt.

From this asymptotic formula, it is natural to attempt to model the primes as a set of random

numbers, where N occurs with probability 1/ logN . This is called the Cramér random prime

model, and it turns out to do a relatively good job of predicting many different statistical

properties of the primes (with, of course, several notable exceptions [11], [14]).

Now, in some sense, the defining characteristic of the actual primes is the Fundamental

Theorem of Arithmetic: that every natural number can be written uniquely as a product

of primes. So a natural question to ask is how close the Cramér random primes come to

satisfying this property. More generally, we will consider this question for the Cramér α-

random primes, where N is chosen as a Cramér α-random prime with probability 1/ logαN .

To be precise, fix α > 0 and define the independent Bernoulli random variables ξN , where

P[ξN = 1] = ν(N) :=


0 if N = 1

1 if N = 2

1/ logα N if N ≥ 3.
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Then the set of Cramér α-random primes is defined to be Aα := {N ≥ 1 | ξN = 1}. In

Sections 2 - 5, we will compute how close the Crameŕ α-random primes come to satisfying

the Fundamental Theorem of Arithmetic. Specifically, we prove the following bounds on how

many Cramér-factorizations (i.e. factorizations of N into Cramér α-random primes) one can

expect the natural numbers to have.

Theorem 1.1. Let b(N) denote the expected number of Cramér-factorizations of N . Then

the average value of b(N) is

1

x

∑
N≤x

b(N) =


Ω(logT x) for arbitrarily large T if α < 1

Ω((log log x)T/ log x) for arbitrarily large T if α = 1

O(1/ logα x) if α > 1.

Moreover, for α = 1, the average value of b(N) over squarefree N is

1
6
π2x

∑
N≤x

squarefree

b(N) = O(1) for α = 1.

Here, the Bachmann-Landau notation f(x) = Ω(g(x)) means that there exist constants

C, x0 > 0 such that f(x) ≥ Cg(x) for all x ≥ x0. In other words, big-Ω notation denotes a

lower bound, just like big-O notation denotes an upper bound.

We would like to point out that these bounds are all effective. For example, in the last

case of this theorem at α = 1, we compute explicitly that the average value of b(N) over

squarefree N is ≤ π2e3/3. We also note that in order to show the last case of the theorem,

we prove an analog of the Hardy-Ramanujan inequality for Cramér random primes.

In Section 6, we also address an alternative way to interpret how close the Cramér α-

random primes come to satisfying the Fundamental Theorem of Arithmetic. In particular, we

investigate how many natural numbers can be written as a product of Cramér random primes.

Let mult(Aα) denote the set of such natural numbers (i.e. mult(Aα) is the multiplicative

closure of Aα). Then we show the following result.

Theorem 1.2. Let Aα denote the set of Cramér α-random primes. Then with probability 1,

mult(Aα) has asymptotic density

ρ(mult(Aα)) =

{
0 if α > 1

1 if α < 1
2
log 2.

Finally, we discuss our results in Section 7. We take note of some related problems

that have been investigated before. And we also state two conjectures: one regarding the

asymptotic density of mult(Aα) for 1
2
log 2 ≤ α ≤ 1, and one regarding the logarithmic

density of multiplicatively closed sets.
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2. A lower bound when α < 1

Fix α < 1. In this section, we then show that

1

x

∑
N≤x

b(N) = Ω(logT x) for arbitrarily large T.

Here, and throughout the rest of the paper, we will use the terminology “factorizations” to

refer to Cramér-factorizations. And we will use the terminology “k-factorizations” to refer to

ordered factorizations of length k. Let bk(N) denote the expected number of k-factorizations

of N , and let Bk(x) :=
∑

N≤x bk(N).

Then Bk(x) satisfies the following recurrence relation. For any k-factorization ≤ x, we

can condition on the first element d in the k-factorization. This means that

Bk(x) =
∑
d≤x

P[ξd = 1] · E[#{(k − 1)-factorizations ≤ x/d} | ξd = 1]

≥
∑
d≤x

P[ξd = 1] · E[#{(k − 1)-factorizations ≤ x/d}]

=
∑
d≤x

ν(d)Bk−1(x/d). (2.1)

Using this recurrence relation, we compute the following bounds on Bk(x).

Lemma 2.1. Fix α < 1, and write α = 1− ε. Then for all k ≥ 1, Bk(x) = Ω(x log−1+kε x).

Proof. We proceed by induction on k. The base case of k = 1 is immediate:

B1(x) =
∑
N≤x

b1(N) =
∑
N≤x

ν(N) ≥
∑

3≤N≤x

1

log1−ε N
≥ (x− 3)

1

log1−ε x
= Ω(x log−1+ε x).

For the inductive step, assume that Bk−1(x) = Ω(x log−1+kε x). So there exist C, x0 > 0 such

that Bk−1(x) ≥ Cx log−1+kε x for all x ≥ x0. Then by the recursive formula,

Bk(x) ≥
∑
d≤x

ν(d)Bk−1(x/d)

≥
∑

3≤d≤x/x0

ν(d)Bk−1(x/d)

≥
∑

3≤d≤x/x0

1

log1−ε d
C (x/d) log−1+(k−1)ε(x/d)

= Cx
∑

3≤d≤x/x0

log(k−2)ε x/d

d((log x− log d) log d)1−ε
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≥ Cx

(1
4
log2 x)1−ε

∑
3≤d≤x/x0

log(k−2)ε x/d

d

≥ 41−εCx log−2+2ε(x)
∑

3≤d≤
√
x

log(k−2)ε x/d

d
for sufficiently large x

≥ 41−εCx log−2+2ε(x) log(k−2)ε(
√
x)

∑
3≤d≤

√
x

1

d

≥ 41−ε

2(k−2)ε
Cx log−2+kε(x)

(
log

⌊√
x
⌋
− 3

2

)
= Ω(x log−1+kε x),

as desired. □

Now, we can easily show the desired result. For any given T ≥ 1, choose k large enough

that −1 + kε ≥ T . Also, note that there are at most k! ways to rearrange a k-factorization

of N , which means that b(N) ≥ 1
k!
bk(N). Thus by Lemma 2.1,

1

x

∑
N≤x

b(N) ≥ 1

x

∑
N≤x

1

k!
bk(N) =

1

x

1

k!
Bk(N) = Ω(logT x),

proving the first case of Theorem 1.1.

We note here that it is tempting to use Lemma 2.1 to bound b(N) by all the k, instead of

just one particular value of k. Specifically, it is tempting to argue something like

1

x

∑
N≤x

b(N) =
1

x

∑
N≤x

∑
k≥1

1

k!
bk(N) =

1

x

∑
k≥1

1

k!
Bk(x) =

1

x

∑
k≥1

1

k!
Ω(x log−1+kε x)

= Ω

(
exp(logε x)− 1

log x

)
= Ω

(
xε

log x

)
.

However, this argument does not work because in our proof of Lemma 2.1, the Bk(x) =

Ω(x log−1+kε x) bound is not uniform in k (in particular, the implied constant x0 grows

double-exponentially in k). In fact, it is not even true that Bk(x) = Ω(x log−1+kε x) uniformly

in k; for any fixed x0, x0 log
−1+kε x0 is unbounded in k, whereas Bk(x0) = 0 for sufficiently

large k.

3. A lower bound when α = 1

Fix α = 1. In this section, we then show that

1

x

∑
N≤x

b(N) = Ω((log log x)T/ log x) for arbitrarily large T.
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We will use the same recurrence relation as in the previous section:

Bk(x) ≥
∑
d≤x

ν(d)Bk−1(x/d).

We can then compute the following bounds on Bk(x).

Lemma 3.1. Fix α = 1. Then for all k ≥ 1, Bk(x) = Ω(x (log log x)k−1/ log x).

Proof. We proceed by induction on k. The base case of k = 1 is immediate:

B1(x) =
∑
N≤x

b1(N) =
∑
N≤x

ν(N) ≥
∑

3≤N≤x

1

logN
≥ x− 3

log x
= Ω

(
x

log x

)
.

For the inductive step, assume that Bk−1(x) = Ω(x(log log x)k−2/ log x). So there exist

C, x0 > 0 such that Bk−1(x) ≥ Cx(log log x)k−2/ log x for all x ≥ x0. Then by the recursive

formula,

Bk(x) ≥
∑
d≤x

ν(d)Bk−1(x/d)

≥
∑

3≤d≤x/x0

1

log d

C (x/d)(log log x/d)k−2

log x/d

≥ Cx
∑

3≤d≤
√
x

(log log x/d)k−2

d log d(log x− log d)
for sufficiently large x

≥ Cx(log log
√
x)k−2

∑
3≤d≤

√
x

1

d log d(log x− log d)

≥ Cx(log log
√
x)k−2

log x

∑
3≤d≤

√
x

1

d log d

≥ Cx(log log
√
x)k−2

log x

∫ √
x

3

1

t log t
dt since t 7→ 1

t log t
is decreasing

=
Cx(log log

√
x)k−2

log x

(
log log

√
x− log log 3

)
= Ω(x(log log x)k−1/ log x),

as desired.

□

Now, for any given T ≥ 1, choose k large enough that k − 1 ≥ T . Then by Lemma 3.1,

1

x

∑
N≤x

b(N) ≥ 1

x

∑
N≤x

1

k!
bk(N) =

1

x

1

k!
Bk(N) = Ω((log log x)T/ log x),

proving the second case of Theorem 1.1.
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4. An upper bound when α = 1

Fix α = 1. In this section, we then show that

1
6
π2x

∑
N≤x

squarefree

b(N) = O(1) for α = 1.

Let B′
k(x) :=

∑
N≤x, sqfr. bk(N). Then similarly to (2.1), we have the following recurrence

relation for B′
k(x):

B′
k(x) =

∑
d≤x

ν(d)E[#{sqfr. (k − 1)-factorizations ≤ x/d, coprime to d} | ξd = 1]

=
∑
d≤x

ν(d)E[#{sqfr. (k − 1)-factorizations ≤ x/d, coprime to d}]

≤
∑
d≤x

ν(d)B′
k−1(x/d).

Note we are restricting to squarefreeN in this section because the corresponding recurrence

relation becomes an upper bound (as opposed to the lower bound of (2.1)).

With this recurrence relation, we can then show the following bounds on B′
k(N). Note

that this result is an analog of the Hardy-Ramanujan inequality for the Cramér random

primes [12, 15]. Here, we have an extra factor of k! appearing (compared to the classical

Hardy-Ramanujan inequality) just because we are considering ordered factorizations.

Lemma 4.1. Fix α = 1. Then for all x ≥ 3 and k ≥ 1, B′
k(x) ≤ 2kx(3+log log x)k−1/ log x.

Proof. We proceed by induction on k. The base case of k = 1 is immediate;

B′
1(x) =

∑
d≤x

ν(d) = 1 +
∑

3≤d≤x

1

log d
≤ 1 +

∫ x

2

1

log t
dt ≤ 2x

log x
,

as desired.

For the inductive step, take k ≥ 2 and assume thatB′
k−1(x) ≤ 2(k−1)x(3+log log x)k−2/ log x

for all x ≥ 3. Then

B′
k(x) ≤

∑
d≤x

ν(d)B′
k−1(x/d)

= B′
k−1(x/2) +

1

log 3
B′

k−1(x/3) +
∑

4≤d≤x

ν(d)B′
k−1(x/d)

≤ 2B′
k−1(x) +

∑
4≤d≤x/3

ν(d)B′
k−1(x/d) +

∑
x/3<d≤x

ν(d)B′
k−1(x/d)
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In each of the terms in the final summation, d > x/3 implies that ν(d) ≤ 2/ log x, and

B′
k−1(x/d) ≤ 1. Thus this final summation is ≤ 2x/ log x. This yields

B′
k(x) ≤ 2B′

k−1(x) +
2x

log x
+

∑
4≤d≤x/3

ν(d)B′
k−1(x/d)

≤ 3
2(k − 1)x(3 + log log x)k−2

log x
+

∑
4≤d≤x/3

1

log d

2(k − 1)(x/d)(3 + log log x/d)k−2

log x/d

= 2(k − 1)x

3(3 + log log x)k−2

log x
+

∑
4≤d≤x/3

(3 + log log x/d)k−2

d log d log x/d

 . (4.1)

Now, observe that

t 7→ t log x/t is increasing over (1, x/e)

hence t 7→ (3 + log log x/t)k−2

t log t log x/t
is decreasing over (1, x/e).

This means that the above summation can be bounded by the integral:∑
4≤d≤x/3

(3 + log log x/d)k−2

d log d log x/d

≤
∫ x/3

3

(3 + log log x/t)k−2

t log t log x/t
dt

=

∫ log x/3

log 3

(3 + log(log x− u))k−2

u(log x− u)
du

=
1

log x

[∫ log x/3

log 3

(3 + log(log x− u))k−2

u
+

(3 + log(log x− u))k−2

log x− u
du

]

≤ 1

log x

[
(3 + log log x)k−2

∫ log x/3

log 3

1

u
du+

∫ log x/3

log 3

(3 + log u)k−2

u
du

]

≤ 1

log x

[
(3 + log log x)k−2 log log x+

(3 + log log x)k−1

k − 1

]
=

(3 + log log x)k−2

log x

[
log log x+

(3 + log log x)

k − 1

]
.

Substituting this bound into (4.1) yields

B′
k(x) ≤

2(k − 1)x(3 + log log x)k−2

log x

[
3 + log log x+

3 + log log x

k − 1

]
=

2(k − 1)x(3 + log log x)k−1

log x

[
1 +

1

k − 1

]
7



=
2kx(3 + log log x)k−1

log x
,

as desired. □

We can then use this lemma to show that the average value of b(N) over squarefree N

is O(1). Since N is squarefree, any factorization of N will have no repeated factors, so

b(N) =
∑∞

k=1 bk(N)/k!. This then means that

1
6
π2x

∑
N≤x

squarefree

b(N) =
1
6
π2x

∑
N≤x

squarefree

∞∑
k=1

bk(N)

k!

=
1
6
π2x

∞∑
k=1

B′
k(x)

k!

≤ 1
6
π2x

∞∑
k=1

2kx(3 + log log x)k−1

k! log x

=
π2

3 log x

∞∑
k=1

(3 + log log x)k−1

(k − 1)!

=
π2

3 log x
exp(3 + log log x)

=
π2e3

3
= O(1),

as desired.

5. An upper bound when α > 1

Fix α > 1. In this section, we then show that

1

x

∑
N≤x

b(N) = O(1/ logα x)

We would again like to use a recursive formula to obtain this result. However, the recursive

relation (2.1) for Bk(x) has its inequality in the wrong direction. So rather than inducting

on the length of a factorization k, we will instead induct on the size of the factors.

Let bm(N) denote the expected number of (unordered) factorizations of N , using only

factors that are ≤ m. Also, let Bm(x) :=
∑

N≤x bm(N). For any factorization ≤ x, we can

condition on the largest factor d (say, with multiplicity j). This then yields the recurrence

relation

Bm(x) =
∑
d≤m

ν(d)
∑
j≥1
dj≤x

Bd−1(x/d
j)
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Using this recurrence relation, we compute the following bounds on Bm(x). Note that the

constants T , then x0, then C are chosen to satisfy a list of constraints. We write out each of

these constraints explicitly to make it clear why they can all be achieved simultaneously.

Lemma 5.1. Fix α > 1. Choose T , then x0, then C large enough such that:{
T ≥ 3,

∫ ∞

log(T−1)

1

uα
du ≤ 1

5 · 2α
,

∑
d≥T

1

d logα d
≤ 1

5 · 2α
; (∗T )

x0 ≥ T 2,
x0

T − 1
≥ x0

T
+ 1, (2α + 4) log log x0 ≤

1

2
log x0,

1

5

x

logα x
≥ (T − 2) log2(x) (log2(x) + 1)T−3 ∀x ≥ x0;

(∗x0)



C ≥ 1,
Cx

logα x
≥ 1 ∀x ≥ 1,

1

5

Cx

logα x
≥ BT (T )

[ √
x

logα T
+

x

logα
√
x

]
∀x ≥ x0,

Cx

logα x
≥ B⌊x⌋(x) ∀ 1 ≤ x ≤ x0.

(∗C)

Then for each m ∈ N, Bm(x) ≤ Cx/ logα x for all x ≥ 1. (Here, the right hand side can be

interpreted as ∞ at x = 1.)

Proof. We proceed by strong induction on m. The base case of m = 1 is immediate: B1(x) =

1 for all x ≥ 1, which satisfies the desired bound by (∗C).

For the inductive step, assume that Bm′(x) ≤ Cx/ logα x for each m′ ≤ m− 1. By (∗C),

we have that Bm(x) ≤ B⌊x⌋(x) ≤ Cx/ logα x for all 1 ≤ x ≤ x0. So assume that x ≥ x0.

Then by the recursive formula,

Bm(x) =
∑
d≤m

ν(d)
∑
j≥1
dj≤x

Bd−1(x/d
j).

We will break this summation over d, j into five parts:

(1) where 2 ≤ d ≤ T − 1;

(2) where d ≥ T , dj > x/T ;

(3) where d ≥ T , dj ≤ x/T , j = 1;

(4) where d ≥ T , dj ≤ x/T , j ≥ 2, dj−1 < j2 logα x;

(5) where d ≥ T , dj ≤ x/T , j ≥ 2, dj−1 ≥ j2 logα x;

and show that each part is ≤ 1
5
Cx/ logα x.
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First, consider

(part 1) =
∑

2≤d≤T−1
d≤m

ν(d)
∑
j≥1
dj≤x

Bd−1(x/d
j).

Note that each Bd−1(x/d
j) term in this summation is ≤ BT−2(x). And BT−2(x) counts the

expected number of factorizations ≤ x using only the factors {2, . . . , T − 2}. To obtain a

product ≤ x, each of these T − 3 factors could be used at most log2(x) times. Thus the

total number of products that could be formed is ≤ (log2(x) + 1)T−3. Hence Bd−1(x/d
j) ≤

BT−2(x) ≤ (log2(x) + 1)T−3, and so

(part 1) =
∑

2≤d≤T−1
d≤m

ν(d)
∑
j≥1
dj≤x

Bd−1(x/d
j)

≤
∑

2≤d≤T−1
d≤m

ν(d)
∑
j≥1
dj≤x

(log2(x) + 1)T−3

≤
∑

2≤d≤T−1
d≤m

ν(d) log2(x)(log2(x) + 1)T−3

≤ (T − 2) log2(x)(log2(x) + 1)T−3

≤ 1

5

Cx

logα x
, by (∗x0), (∗C)

as desired.

Second, we have

(part 2) =
∑
d≥T
d≤m

ν(d)
∑
j≥1

x/T<dj≤x

Bd−1(x/d
j)

≤
∑

T≤d≤x

ν(d)Bd−1(T ) (at most one inner term since d ≥ T )

≤ BT (T )
∑

T≤d≤x

1

logα d

= BT (T )

 ∑
T≤d<

√
x

1

logα d
+

∑
√
x≤d≤x

1

logα d

 using (∗x0)

≤ BT (T )

[ √
x

logα T
+

x

logα
√
x

]
≤ 1

5

Cx

logα x
, by (∗C)

as desired.
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Third, consider

(part 3) =
∑

T≤d≤x/T
d≤m

ν(d)Bd−1(x/d)

≤
∑

T≤d≤x/T
d≤m

1

logα d

C (x/d)

logα x/d

≤ Cx
∑

T≤d≤x/T

1

d logα d logα x/d
.

Observe that

u 7→ eu/αu(log x− u) is unimodal up over (0, log x)

hence t 7→ t1/α log t(log x− log t) is unimodal up over (1, x)

hence t 7→ 1

t logα t logα x/t
is unimodal down over (1, x).

This means that

(part 3) ≤ Cx
∑

T≤d≤x/T

1

d logα d logα x/d

≤ Cx

∫ x/T+1

T−1

1

t logα t logα x/t
dt

≤ Cx

∫ x/(T−1)

T−1

1

t logα t logα x/t
dt by (∗x0)

= Cx

∫ log(x/(T−1))

log(T−1)

1

uα(log x− u)α
du

=
Cx

logα x

∫ log(x/(T−1))

log(T−1)

(
1

u
+

1

log x− u

)α

du

≤ Cx

logα x

2α

2

∫ log(x/(T−1))

log(T−1)

1

uα
+

1

(log x− u)α
du by Jensen’s Inequality

=
Cx

logα x
2α

∫ log(x/(T−1))

log(T−1)

1

uα
du

≤ 1

5

Cx

logα x
, by (∗T )

as desired.
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Fourth, consider

(part 4) =
∑
d≥T
d≤m

ν(d)
∑
j≥2

dj≤x/T, dj−1≥j2 logα x

Bd−1(x/d
j)

=
∑

2≤j≤logT (x/T )

∑
T≤d≤(x/T )1/j

d≤m, dj−1≥j2 logα x

ν(d)Bd−1(x/d
j)

≤
∑

2≤j≤log x

∑
T≤d≤(x/T )1/j

dj−1≥j2 logα x

1

logα d

C (x/dj)

logα x/dj

=
∑

2≤j≤log x

Cx
∑

T≤d≤(x/T )1/j

dj−1≥j2 logα x

1

dj logα d logα x/dj
(5.1)

Then using the facts that logα x/dj ≥ logα T ≥ 1 and dj−1 ≥ j2 logα x,

(part 4) ≤
∑

2≤j≤log x

Cx
∑

T≤d≤(x/T )1/j

dj−1≥j2 logα x

1

dj logα d

≤
∑

2≤j≤log x

Cx
∑

T≤d≤(x/T )1/j

dj−1≥j2 logα x

1

d j2 logα x logα d

≤
∑

2≤j≤log x

Cx

logα x

1

j2

∑
d≥T

1

d logα d

≤
∑

2≤j≤log x

Cx

logα x

1

j2
1

5
by (∗T )

≤ 1

5

Cx

logα x
,

as desired.

Fifth, by an identical argument as in (5.1), we have

(part 5) ≤
∑

2≤j≤log x

Cx
∑

T≤d≤(x/T )1/j

dj−1<j2 logα x

1

dj logα d logα x/dj
. (5.2)

Note that since dj−1 < j2 logα x, we have

j log d ≤ 2(j − 1) log d ≤ 2 log(j2 logα x) ≤ 2 log((log x)2 logα x)

≤ (2α + 4) log log x ≤ 1

2
log x, by (∗x0)

so logα x/dj = (log x− j log d)α ≥
(
1

2
log x

)α

=
logα x

2α
.

12



Plugging this bound into (5.2) then yields

(part 5) ≤
∑

2≤j≤log x

2α
Cx

logα x

∑
T≤d≤(x/T )1/j

dj−1<j2 logα x

1

dj logα d

≤
∑

2≤j≤log x

2α

T j−1

Cx

logα x

∑
d≥T

1

d logα d

≤
∑

2≤j≤log x

1

T j−1

1

5

Cx

logα x
by (∗T )

≤ 1

5

Cx

logα x
,

completing the proof. □

This lemma immediately yields the desired bound:

1

x

∑
N≤x

b(N) =
1

x
B⌊x⌋(x) = O(1/ logα x),

proving the third case of Theorem 1.1.

6. Asymptotic density of mult(Aα)

Recall that mult(Aα) denotes the set of all natural numbers which can be written as

products of Cramér α-random primes. We then show the following result on the asymptotic

density of mult(Aα).

Theorem 1.2. Let Aα denote the set of Cramér α-random primes. Then with probability 1,

mult(Aα) has asymptotic density

ρ(mult(Aα)) =

{
0 if α > 1

1 if α < 1
2
log 2.

Proof. The first half of this theorem follows directly from Theorem 1.1. In particular, The-

orem 1.1 implies that the expected asymptotic density of mult(Aα) is 0:

E[ρ(mult(Aα))] = E

[
lim
x→∞

1

x

∑
N≤x

1N∈mult(Aα)

]

= lim
x→∞

1

x

∑
N≤x

E
[
1N∈mult(Aα)

]
≤ lim

x→∞

1

x

∑
N≤x

b(N)

= 0 when α > 1,
13



which yields the desired result.

For the second half of the theorem, we use a probability argument. In particular, for a

density 1 set of N , we show that P[N /∈ AαAα] tends to 0 as N → ∞. This is sufficient to

show the desired result since then,

E[ρ(AαAα)] = lim
x→∞

1

x

∑
N≤x

E [1N∈AαAα ] = lim
x→∞

1

x

∑
N≤x

P[N ∈ AαAα] = 1,

which means that ρ(AαAα) = 1 (and hence ρ(mult(Aα)) = 1) with probability 1.

The probability that N /∈ AαAα is given by

P[N /∈ AαAα] = P[d /∈ Aα or N/d /∈ Aα ∀ d | N ]

≤ P[d /∈ Aα or N/d /∈ Aα ∀ d | N, 3 ≤ d <
√
N ]

=
∏
d|N,

3≤d<
√
N

P[d /∈ Aα or N/d /∈ Aα]

=
∏
d|N,

3≤d<
√
N

(
1− 1

logα d

1

logα N/d

)
,

so − logP[N /∈ AαAα] ≥
∑
d|N,

3≤d<
√
N

− log

(
1− 1

logα d

1

logαN/d

)

≥
∑
d|N,

3≤d<
√
N

1

logα d

1

logαN/d

≥
∑
d|N,

3≤d<
√
N

(
4

log2N

)α

≥
4α

(
1
2
σ0(N)− 3

)
log2α N

.

Now, for α < 1
2
log 2, choose ε > 0 such that 2α < log 2−ε. It is well-known that the normal

order of log σ0(N) is (log 2) log logN [13, Theorem 432]. So in particular, for a density 1 set

of N , we have σ0(N) ≥ loglog 2−ε N and so

− logP[N /∈ AαAα] ≥
4α

(
1
2
loglog 2−ε N − 3

)
log2αN

→ ∞,

which means that P[N /∈ AαAα] → 0, as desired. □
14



7. Discussion

In this section, we discuss our results. First, we would like to point out a (non-probabilistic)

related problem has been investigated before. Define the Beurling generalized primes to be

a multiset P of real numbers 0 < p1 ≤ p2 ≤ . . .. Then the Beurling generalized integers

are defined to be the multiset N of real numbers of the form pa11 pa22 · · · for ai ∈ N0. In the

past, several works have investigated how the behavior of these Beurling generalized integers

compares to that of the classical integers. Specifically, [7, Theorem 2] shows that if, for

example, #{β ∈ P : β ≤ x} = x
log x

+ O( x
log1+ε x

) (i.e. the Beurling generalized primes grow

like the actual primes) then #{β ∈ N : β ≤ x} = cx + o(x) for some constant c > 0 (i.e.

the Beurling generalized numbers grow like a sequence of natural numbers with a nonzero

density).

One critical difference between the Beurling generalized integers and mult(Aα) studied in

this paper is that the Beurling generalized integers are counted with multiplicity. In some

sense, the fundamental difficulty in our setting is accounting for natural numbers that can

be written as a product of Cramér α-random primes in multiple ways. If one did not have

to account for multiplicity (i.e. if one instead considered mult(Aα) to be a multiset), the

results of this paper could be made stronger.

Next, we make the following conjecture on the asymptotic density of mult(Aα). Only the

cases of 1
2
log 2 ≤ α ≤ 1 remain to be proven.

Conjecture 7.1. Let Aα denote the set of Cramér α-random primes. Then with probability

1, mult(Aα) has asymptotic density

ρ(mult(Aα)) =

{
0 if α ≥ 1

1 if α < 1.

We suspect that the case of α = 1 in Conjecture 7.1 will be a much more difficult problem

than the case of 1
2
log 2 ≤ α < 1.

For α < 1, Theorem 1.1 shows that the average number of Cramér-factorizations of N

tends to infinity rather quickly. But this in itself is not enough to show that mult(Aα) has

asymptotic density 1. This conclusion does seems likely to be true, however. Additionally,

note that for the case of α < 1
2
log 2 in Theorem 1.2, we only utilized a bound on ρ(AαAα)

(i.e. only considering length 2 factorizations). This is a very crude estimate of ρ(mult(Aα)),

and we suspect that more accurate estimates would yield the desired result for all α < 1.

For α = 1, on the other hand, the problem of determining the behavior of mult(A1)

remains wide open. Recall that every natural number has exactly one prime-factorization.

So since A1 is distributed like the primes, one would expect that the average number of
15



Cramér factorizations of the natural numbers should also be roughly 1. This means that

if any natural numbers have multiple Cramér factorizations, other natural numbers would

be forced to have zero Cramér factorizations. For this reason, we guessed in Conjecture 7.1

that mult(A1) should have asymptotic density 0. However, this guess is mainly just based

on intuition, and it is quite possible that the asymptotic density is positive with non-zero

probability. In this case, it would also be an interesting problem to compute the expected

asymptotic density of mult(A1) (assuming it exists).

Finally, we take note of one technicality in the above problem. In Theorem 1.2, we proved

that for various α, mult(Aα) will have a particular density with probability 1. Surprisingly,

however, a given multiplicatively closed set is not guaranteed to have a density.

In 1934, Chowla conjectured that any set B ⊆ N which is closed under multiplication by

the natural numbers would have a density [4]. This conjecture turns out to not be true,

however; Besicovitch provided a counterexample the next year [3]. We repeat the argument

of Besicovitch here (modified slightly to our context of multiplicatively closed sets instead

of sets closed under multiplication by the natural numbers) to construct a set A ⊆ N such

that mult(A) does not have a density.

Proposition 7.2. There exists a set A ⊆ N such that mult(A) does not have a density.

Proof. For any set B ⊆ N, let ρ(B, x) := 1
x
#{N ≤ x : N ∈ B}. (So that the lower density

of B is ρ(B) := lim infx→∞ ρ(B, x), the upper density of B is ρ(B) := lim supx→∞ ρ(B, x),

and the density of B is ρ(B) := limx→∞ ρ(B, x) assuming the limit exists.)

Then for k ≥ 1, let Rk denote the range of integers [2k, 2k+1), and let NRk denote the set

of all multiples of elements of Rk. Besicovitch showed in [3, Theorem 1] that the ρ(NRk)

all exist, and that lim inf ρ(NRk) = 0. Then observe that 1N∈NRk
is 2k+1!-periodic (i.e.

N ∈ NRk if and only if N + 2k+1! ∈ NRk). Hence setting pk := ρ(NRk, 2
k+1!), we have that

ρ(NRk, x) = pk for each x a multiple of 2k+1!. Note this also implies that pk = ρ(NRk).

Now, choose indices k1 < k2 < k3 < . . . large enough such that

pk1 ≤
1

8

pk2 ≤
1

16
and 2k2 > 2k1+1!

pk3 ≤
1

32
and 2k3 > 2k2+1!

...

Then let A := Rk1 ∪Rk2 ∪ . . ., and we will show that mult(A) does not have a density.
16



For i ≥ 1, consider xi = 2ki+1. Since Rki = [2ki , 2ki+1) ⊆ mult(A), we have that

ρ(mult(A), xi) ≥ 1
2
for all i and so ρ(mult(A)) ≥ 1

2
. Alternatively, for i ≥ 1, consider

xi = 2ki+1!. Note that

mult(A) = mult(Rk1 ∪Rk2 ∪ . . .)

⊆ N(Rk1 ∪Rk2 ∪ . . .)

= NRk1 ∪ NRk2 ∪ . . . ,

so ρ(mult(A), xi) ≤ ρ(NRk1 , xi) + ρ(NRk2 , xi) + . . .

Now, for all j ≥ i + 1, we have 2kj > xi, so ρ(NRkj , xi) = 0 And for all j ≤ i, we have that

xi is a multiple of 2kj+1!, so ρ(NRkj , xi) = pkj . This means that

ρ(mult(A), xi) ≤ ρ(NRk1 , xi) + ρ(NRk2 , xi) + . . .

= pk1 + . . .+ pki

≤ 1

8
+ . . .+

1

2i+2

≤ 1

4

for all i and so ρ(mult(A)) ≤ 1
4
.

Thus ρ(mult(A)) < ρ(mult(A)), and so mult(A) does not have a density. □

Although sets closed under multiplication by natural numbers will not necessarily have an

asymptotic density, it turns out that they are guaranteed have a logarithmic density:

ρlog(B) := lim
x→∞

1

log x

∑
b∈B,b≤x

1

b
.

This result is known as the Davenport-Erdős theorem, proven in [5, 6] (and see also related

work in [8, 9, 2, 1, 10]).

However, this still leave wide open the question of whether or not multiplicatively closed

sets have a logarithmic density. We propose the following generalization of the Davenport-

Erdős theorem.

Conjecture 7.3. Every multiplicatively closed set B ⊆ N has a logarithmic density.
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