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Abstract. Let F denote the fundamental domain for SL2(Z) on the upper half plane H. William
Duke showed that as fundamental discriminants D → −∞, the sets CMD (CM points of discrim-
inant D) are equidistributed in F . In this paper, we investigate the behavior of CM points on
the boundary of F . We prove that such CM points are equidistributed on the boundary, and also
give a complete characterization of when every CMD point lies on the boundary. Along the way,
we also (conditionally) give a complete classification of negative discriminants with class group of
small exponent.

1. Introduction

Let H := {z ∈ C : Im z > 0} denote the complex upper half plane, and

F :=

{
z = x+ iy ∈ H : |z| ≥ 1,−1

2
≤ x ≤ 0

}
∪
{
z ∈ H : |z| > 1, 0 < x <

1

2

}
denote the standard fundamental domain for SL2(Z) acting on H. For negative discriminants D,
let CMD denote the set of CM points in H of discriminant D. It turns out that the action of SL2(Z)
on H is also an action on these CMD points. Hereafter, when we refer to “discriminants” in this
paper, we are only referring to negative discriminants.

In [3], Duke investigated how CM points are distributed over the fundamental domain F . In
particular, he showed that for fundamental discriminants D; as D → −∞, the CMD points are
equidistributed via the hyperbolic measure dµhyp = 1

y2
dx dy. In this paper, we investigate the

behavior of CM points on the boundary of F . We study this question for all discriminants D, not
just the fundamental ones.

First, we show that the CM points on the boundary of F are equidistributed according to certain
metrics. We will parametrize CM points on the left boundary of F (i.e. {−1

2 + iy : y ≥
√
3
2 }) by

their imaginary parts y, and CM points on the lower arc of F (i.e. {eiθ : π
2 ≤ θ ≤ 2π

3 }) by their
arguments θ.

Theorem 1.1. Let CMLB
|D|≤∆ denote the CM points on the left boundary of F with absolute dis-

criminant |D| ≤ ∆, and CMLA
|D|≤∆ denote the CM points on the lower arc of F with absolute

discriminant |D| ≤ ∆. Then as ∆ → ∞;

(1) Im CMLB
|D|≤∆ is equidistributed over every fixed [

√
3
2 ,K] via the metric dµ = 1

ydy,
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(2) arg CMLA
|D|≤∆ is equidistributed over [π2 ,

2π
3 ] via the metric dν = 1

sin θ dθ.

We make two remarks here about this result.

(1) This equidistribution theorem differs from Duke’s result in that we are considering CMD

points for all discriminants |D| ≤ ∆, instead of for each individual discriminant D. This is
necessary because for individual discriminants D, the CMD points on the boundary are not
even dense in their respective intervals (for example, Im CMLB

D cannot contain any values
between

√
|D|
4 and

√
|D|
2 ).

(2) The two parts of Theorem 1.1 can actually be viewed as the same phenomenon. The two
metrics dµ and dν are precisely the restriction of the hyperbolic metric ds =

√
dx2+dy2

y to
the left boundary of F and to the lower arc of F , respectively. And in fact, we will prove
both parts of Theorem 1.1 in a unified manner (by transforming the lower arc of F into the
vertical line segment {−1

2 + iy : 1
2 ≤ y ≤

√
3
2 }).

Next, in Theorem 1.2, we give a classification of when all the CMD points in F lie on the
boundary of F .

Theorem 1.2. Every CMD point contained in F lies on the boundary of F if and only if Cl(OD)

has exponent dividing 2 and D is odd or −4.

Conditionally on the non-existence of Siegel zeros, such discriminants D are precisely those given
in the following table. Unconditionally, this table could possibly also include the discriminants
arising from one additional fundamental discriminant.

Class Group Discriminants

{e} −3,−4,−7,−11,−19,−27,−43,−67,−163

Z/2Z −15,−35,−51,−75,−91,−99,−115,−123,−147,−187,−235,−267,−403,−427

(Z/2Z)2 −195,−315,−435,−483,−555,−595,−627,−715,−795,−1435

(Z/2Z)3 −1155,−1995,−3003,−3315

In order to show the second half of this theorem, we will need a classification of class groups
Cl(OD) of exponent dividing 2. (Recall here that the exponent E of a group G is the minimal
integer E ≥ 1 such that gE = e for all g ∈ G.) The methods we develop to give this classification
turn out to also work for any given exponent E. So we give a (conditional) classification of all class
groups Cl(OD) with exponent 1 ≤ E ≤ 8.

Such a classification was already given for fundamental discriminants in [4]. To extend from
fundamental discriminants to all discriminants, we use the ideas from a recent work of Fan and
Pollack [5]. In particular, for any given fundamental discriminant D0, we use ideas from [5] to
develop an algorithm to compute the full list of conductors f for D0 such that Cl(OD0f2) has
exponent E.
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Computing discriminants via this algorithm then yields Tables A.1 - A.8, listing discriminants
with class group of exponent 1 ≤ E ≤ 8. The following theorem gives conditions for which one can
prove that these tables are complete. (And in the authors’ opinion, it is extremely likely that all
of these tables are in fact complete.)

Theorem 1.3. Tables A.1 - A.8 list negative discriminants with class group of exponent 1 ≤ E ≤ 8.

(1) Unconditionally, the table for exponent E = 1 is complete.
(2) Assuming the non-existence of Siegel zeros, the tables for exponent E = 2, 4, 8 are all

complete.
(3) Unconditionally, the tables for exponent E = 2, 4, 8 could also contain the discriminants

arising from at most one additional fundamental discriminant.
(4) Assuming ERH (Extended Riemann Hypothesis), the tables for exponent E = 2, 3, 4, 5, 8 are

all complete.
(5) Assuming ERH, the table for E = 6 is complete if there are no fundamental discriminants

3.1 · 1020 ≤ |D| ≤ 2.5 · 1025 with class groups of exponent 6.
(6) Assuming ERH, the table for E = 7 is complete if there are no fundamental discriminants

3.1 · 1020 ≤ |D| ≤ 3.9 · 1030 with class groups of exponents 7.

Now, we would like to point out three different motivations for this project investigating CM
points on the boundary of F . First, this project is a natural variation of Duke’s celebrated result
in [3] concerning the equidistribution of CM points over F . Theorem 1.1 here gives an analogous
result about the equidistribution of CM points over the boundary of F . Second, it leads to a
classification of all discriminants of small exponent, which is of independent interest (compare, for
example, with [4]). Third, the results of this paper were needed in [1] to show certain results about
transcendence of zeros of modular forms. (In fact, this was the original reason why we started to
investigate this topic of CM points on the boundary of F .) It turns out that in certain cases, if a
modular form has a non-transcendental zero, then it has zeros at every CMD point for some D (see
[1, Lemma 3.1]). But in many scenarios, these modular forms can only have zeros on the boundary
of F . Hence it becomes necessary to classify which CMD have all their points on the boundary of
F .

Finally, we give an overview of the structure of the paper. In Section 2, we give some background,
reviewing the basics of CM theory. Then in Section 3, we show Theorem 1.1 by estimating how
many CM points lie in given intervals. In Section 4, we prove Theorem 1.2 (assuming Theorem
1.3). Finally in Sections 5 and 6 we prove Theorem 1.3. Section 5 uses ideas from [5] to prove a
particular divisibility property (Lemma 5.1) that conductors f must satisfy in order to yield class
groups of a given exponent. Then Section 6 uses this divisibility property to develop an algorithm
to compute the complete list of conductors with class group of a given exponent. This algorithm
is then used to compute Tables A.1 - A.8, listed in the appendix.
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2. Background on CM Theory

In this section, we review the basics of CM theory. The details are all standard, and can be
found in Cox [2].

Recall that a CM point τ is the solution in H of a quadratic equation with integer coefficients
az2+bz+c = 0. Without loss of generality, we impose here the conditions a ≥ 1 and gcd(a, b, c) = 1.
This CM point τ is uniquely determined by the triple [a, b, c], so we will often refer to a CM point
τ by its corresponding triple [a, b, c]. Here, D := b2 − 4ac is called the discriminant of τ = [a, b, c],
and we let CMD denote the set of CM points with discriminant D. Note that the discriminant D

here is necessarily negative and congruent to 0 or 1 modulo 4.

We call two CM points equivalent if they are in the same orbit under the standard action of
SL2(Z) on H: ( p q

r s ) : τ 7→ pτ+q
rτ+s . It turns out that mapping a CM point τ to the ideal Z⊕τZ induces

a bijection between SL2(Z)-equivalence classes of CMD and the class group Cl(OD). Under this
bijection, SL2(Z)\CMD inherits the group structure of Cl(OD). Here, Cl(OD) denotes the class
group of the imaginary quadratic order OD of discriminant D.

Now, a discriminant D0 is called fundamental if it is the discriminant of the quadratic field
Q(

√
D0). In this case, OD0 would be the full ring of integers of Q(

√
D0), and so Cl(OD0) =

Cl(Q(
√
D0)). It turns out that every discriminant D can be factored uniquely as D = D0f

2, where
D0 is a fundamental discriminant, and f is called the conductor. Under this factorization, for any
τ such that OD0 = Z⊕ τZ, we have OD = Z⊕ fτZ.

Finally, we mention two facts about the group structure of SL2(Z)\CMD. First, the group inverse
of the CMD point [a, b, c] is [a,−b, c]. Second, the CMD group identity in F is given by

τ =

[1, 0,−D
4 ] if D ≡ 0 (mod 4)

[1, 1,−D−1
4 ] if D ≡ 1 (mod 4).

(2.1)

Observe that when D ≡ 0 (mod 4), this point lies on the imaginary axis {iy : y ≥ 1}, and when
D ≡ 1 (mod 4), it lies on the left boundary {−1

2 + iy : y ≥
√
3
2 } of F .

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We will utilize the following three lemmas, which all
follow from standard analytic number theory arguments. In the following, a, c, d will always denote
natural numbers. Addtionally, φ denotes the Euler totient function, µ denotes the Mobius function,
and γ denotes the Euler-Mascheroni constant.

Lemma 3.1 ([6, p. 393]). For positive real numbers T and natural numbers a,

#{c ≤ T : (c, a) = 1} =
φ(a)

a
T +O(a1/4).
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Lemma 3.2 ([6, p. 399]). For positive real numbers T ,∑
a≤T

φ(a) =
3

π2
T 2 +O(T log T ).

Lemma 3.3. For positive real numbers T ,∑
a≤T

φ(a)

a2
=

6

π2
log T + γ0 +O

(
log T

T

)
for a certain constant γ0.

Proof. We have∑
a≤T

φ(a)

a2
=

∑
a≤T

1

a

∑
d|a

µ(d)

d
=

∑
d≤T

µ(d)

d

∑
a≤T
d|a

1

a
=

∑
d≤T

µ(d)

d2

∑
a′≤T/d

1

a′

=
∑
d≤T

µ(d)

d2

(
log(T/d) + γ +O

(
1

T/d

))

= (log T )
∑
d≤T

µ(d)

d2
+

∑
d≤T

µ(d)(γ − log d)

d2
+

∑
d≤T

µ(d)

d
O

(
1

T

)

= (log T )

(
6

π2
+O

(
1

T

))
+

(
γ0 +O

(
log T

T

))
+O

(
log T

T

)
=

6

π2
log T + γ0 +O

(
log T

T

)
,

as desired. Note that γ0 here is the constant γ0 :=
∑
d≥1

µ(d)(γ − log d)

d2
. �

We now use these three lemmas to show that CM points are equidistributed over the boundary
of F .

Theorem 1.1. Let CMLB
|D|≤∆ denote the CM points on the left boundary of F with absolute dis-

criminant |D| ≤ ∆, and CMLA
|D|≤∆ denote the CM points on the lower arc of F with absolute

discriminant |D| ≤ ∆. Then as ∆ → ∞;

(1) Im CMLB
|D|≤∆ is equidistributed over every fixed [

√
3
2 ,K] via the metric dµ = 1

ydy,
(2) arg CMLA

|D|≤∆ is equidistributed over [π2 ,
2π
3 ] via the metric dν = 1

sin θ dθ.

Proof. First, observe that under the SL2(Z) transformation z 7→
(
0 −1
1 1

)
z = −1

z+1 , the lower arc
{eiθ : π

2 ≤ θ ≤ 2π
3 } maps bijectively to {−1

2 + iy : 1
2 ≤ y ≤

√
3
2 }. Additionally this transformation

maps θ 7→ y = 1
2

sin θ
1+cos θ , so that the metric dν = 1

sin θdθ becomes dµ = 1
ydy. So let CMLB*

|D|≤∆ denote
the CM points on {−1

2 + iy : y ≥ 1
2} with absolute discriminant |D| ≤ ∆. Then to prove parts

(1) and (2), it suffices to show that Im CMLB*
|D|≤∆ is equidistributed over every fixed [12 ,K] via the

metric dµ = 1
ydy.
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Now, it is straightforward to see that

Im CMLB*
|D|≤∆ =

{
Im [a, a, c] : a ≥ 1, c ≥ a

2
, (c, a) = 1, |D| ≤ ∆

}
=

{√
4ac− a2

2a
: a ≥ 1, c ≥ a

2
, (c, a) = 1, 4ac− a2 ≤ ∆

}
.

Then under the reparametrization t(y) = y2 + 1
4 ; the set Im CMLB*

|D|≤∆ ∩ [12 ,K] maps precisely to
the set of rationals:

R∆ :=

{
1

2
≤ c

a
≤ K ′ : a ≥ 1, (c, a) = 1, 4ac− a2 ≤ ∆

}
(where K ′ := K2 + 1/4).

Also note that under this reparametrization, dµ = 1
y dy becomes dµ = 2

4t−1 dt.

Hence to prove the desired result, it suffices to show that R∆ is equidistributed over [12 ,K
′] via

the metric dµ = 2
4t−1 dt. Specifically, this means that for every fixed interval [X,Y ] ⊆ [1,K ′],

#R∆ ∩ [X,Y ]

#R∆
−→

∫ Y
X dµ∫K′

1 dµ
=

[
1
2 log(4t− 1)

]t=Y

t=X[
1
2 log(4t− 1)

]t=K′

t=1

as ∆ → ∞.

We will prove this identity by showing that

#R∆ ∩ [X,Y ] =
3∆

2π2

[
1

2
log(4t− 1)

]t=Y

t=X

+O
(
∆5/8

)
. (∗)

Now, observe that 4ac− a2 ≤ ∆ if and only if c ≤ ∆
4a + a

4 . This means that

#R∆ ∩ [X,Y ] =
∑
a≥1

#
{
X ≤ c

a
≤ Y : (c, a) = 1, 4ac− a2 ≤ ∆

}
=

∑
a≥1

#

{
aX ≤ c ≤ min

(
aY,

∆

4a
+

a

4

)
: (c, a) = 1

}
. (3.1)

Next, observe that

aY ≤ ∆

4a
+

a

4
iff a ≤

√
∆

4Y − 1
and aX ≤ ∆

4a
+

a

4
iff a ≤

√
∆

4X − 1
.

Applying these facts to (3.1), we obtain that

#R∆ ∩ [X,Y ]

=
∑

1≤a≤
√

∆
4Y −1

# {aX ≤ c ≤ aY : (c, a) = 1}

+
∑

√
∆

4Y −1
<a≤

√
∆

4X−1

#

{
aX ≤ c ≤ ∆

4a
+

a

4
: (c, a) = 1

}

=
∑

1≤a≤
√

∆
4Y −1

[
φ(a)

a
(aY − aX) +O

(
a1/4

)]
(Lemma 3.1)

6



+
∑

√
∆

4Y −1
<a≤

√
∆

4X−1

[
φ(a)

a

(
∆

4a
+

a

4
− aX

)
+O

(
a1/4

)]
(Lemma 3.1)

= (Y −X)
∑

1≤a≤
√

∆
4Y −1

φ(a) +

(
1

4
−X

) ∑
√

∆
4Y −1

<a≤
√

∆
4X−1

φ(a)

+
∆

4

∑
√

∆
4Y −1

<a≤
√

∆
4X−1

φ(a)

a2
+ O

(√
∆ ·∆1/8

)

=(Y −X)
3

π2

[
∆

4Y − 1

]
+

(
1

4
−X

)
3

π2

[
∆

4X − 1
− ∆

4Y − 1

]
(Lemma 3.2)

+
∆

4

6

π2

[
log

√
∆

4X − 1
− log

√
∆

4Y − 1

]
+O

(
∆5/8

)
(Lemma 3.3)

=
3∆

π2

[
Y −X

4Y − 1
− 1

4
+

X − 1
4

4Y − 1

]

+
∆

4

6

π2

[
1

2
log(4Y − 1)− 1

2
log(4X − 1)

]
+O

(
∆5/8

)
=

3∆

2π2

[
1

2
log(4t− 1)

]t=Y

t=X

+O
(
∆5/8

)
,

verifying (∗). �

4. Proof of Theorem 1.2

We first give a lemma characterizing the CM points that lie on the boundary of F (or on the
imaginary axis).

Lemma 4.1. The CMD points in F lying on the boundary of F or on the imaginary axis are
precisely those of order dividing 2. Moreover, CMD includes a point on the imaginary axis only
when D ≡ 0 (mod 4).

Proof. Recall that the inverse of [a, b, c] is [a,−b, c], and observe that this operation corresponds to
reflecting points in H across the imaginary axis. This means that a CMD point of order dividing 2

must necessarily be SL2(Z)-equivalent to its reflection. Hence such CMD points in F are precisely
those that lie on the boundary of F or on the imaginary axis.

Moreover, note that every CMD point on the imaginary axis is of the form [a, 0, c]. In this case,
the discriminant D = −4ac must be congruent to 0 modulo 4. �

This lemma allows us to classify all discriminants D satisfying the property that every CMD

point in F lies on the boundary of F . In particular, we prove Theorem 1.2 here, assuming Theorem
1.3. Then Theorem 1.3 will be proven in the last two sections of the paper.
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Theorem 1.2. Consider negative discriminants D. Then every CMD point in F lies on the
boundary of F if and only if Cl(OD) has exponent dividing 2 and D is odd or −4.

Conditionally on the non-existence of Siegel zeros, such discriminants D are precisely those given
in the following table. Unconditionally, this table could possibly also include the discriminants
arising from one additional fundamental discriminant.

Class Group Discriminants

{e} −3,−4,−7,−11,−19,−27,−43,−67,−163

Z/2Z −15,−35,−51,−75,−91,−99,−115,−123,−147,−187,−235,−267,−403,−427

(Z/2Z)2 −195,−315,−435,−483,−555,−595,−627,−715,−795,−1435

(Z/2Z)3 −1155,−1995,−3003,−3315

Proof. The first half of the theorem for even discriminants follows from (2.1). In this case, the CMD

identity [1, 0,−D
4 ] =

√
D
2 lies on the boundary of F only for D = −4. And since |Cl(O−4)| = 1,

CM−4 consists of just this point.

The first half of the theorem for odd discriminants follows from Lemma 4.1. In this case, a CMD

point in F lies on the boundary of F if and only if it is of order dividing 2. This immediately yields
the desired result.

Finally, the second half of the theorem follows from Theorem 1.3. Here, the desired table of
discriminants comes from the classification of class groups of exponent 1 and 2. �

5. A Divisibility Property for Conductors

In these last two sections, we work towards a proof of Theorem 1.3. This section uses ideas from
Fan and Pollack [5] to show that conductors with class groups of a given exponent must satisfy a
certain divisibility property (Lemma 5.1). It turns out that for any given exponent E, there are
only finitely many conductors f that satisfy this divisibility property. Hence in the next section,
we develop an algorithm to compute the complete list of conductors f associated to a fundamental
discriminant D0 such that Cl(OD0f2) has exponent E. This algorithm will then be used to construct
Tables A.1 - A.8.

We now work towards a proof of Lemma 5.1. Fix a fundamental discriminant D0, and let
D = D0f

2 be a discriminant with conductor f . The following exposition follows Fan and Pollack
[5]. Define the principal part of the class group as follows:

PrinCl(OD) := (OD0/fOD0)
×/〈images of units of OD0 and images of integers coprime to f〉.

In particular, PrinCl(OD) can be identified with a subgroup of Cl(OD). Next, we define the pre-
class group by

PreCl(OD) := (OD0/fOD0)
×/〈images of integers coprime to f〉.
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It follows from the definitions that

PreCl(OD)/Uf
∼= PrinCl(OD) (5.1)

where Uf is the image of O×
D0

in PreCl(OD). So in particular, |Uf | divides |O×
D0

|. Note that for
imaginary quadratic fields, we have the following formula for |O×

D0
|:

|O×
D0

| =


6 D0 = −3

4 D0 = −4

2 otherwise.

Now, define the function

L(f) := lcm
{
pk

(
1−

(
D0

p

)
1

p

)
: pk||f

}
.

We now show the following lemma that bounds L(f) in terms of Exp Cl(OD). This is the divisibility
property referenced previously that all conductors f with class group of a given exponent must
satisfy.

Lemma 5.1. Fix a negative discriminant D = D0f
2. Then L(f) divides 12 · |O×

D0
| · Exp Cl(OD).

Proof. First, by [5, Proposition 2.3], we have

L(f)

∣∣∣∣ 12 · Exp PreCl(OD).

Next, as a consequence of (5.1), we have

Exp PreCl(OD)

∣∣∣∣ |Uf | · Exp PrinCl(OD)

∣∣∣∣ |O×
D0

| · Exp PrinCl(OD).

Finally, since PrinCl(OD) is a subgroup of Cl(OD),

Exp PrinCl(OD)

∣∣∣∣ Exp Cl(OD).

Combining these three statements,

L(f)

∣∣∣∣ 12 · |O×
D0

| · Exp Cl(OD),

as desired. �

Finally, for any fixed exponent E, we take note of a method to determine which f satisfy the
divisibility property L(f) | (12 · |O×

D0
| ·E) from Lemma 5.1. This problem reduces to the question

of determining which f can take on a given value of L(f). And this question is answered by the
following lemma, essentially amounting to a way to invert the function f 7→ L(f).

Lemma 5.2. Let θ(m) :=
∏

L(pk)|m

pk. Then f divides θ(L(f)).

This lemma follows immediately from the fact that L(pk) | L(f) for each pk ‖ f .
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6. An algorithm to compute discriminants

Fix 1 ≤ E ≤ 8. Then employing Lemmas 5.1 and 5.2, one can use the following algorithm to
compute the (conditionally) complete list of discriminants D such that Cl(OD) has exponent E.

• First, compute the fundamental discriminants D0 with class group of exponent dividing E.
(It suffices to check these D0, since Cl(OD0f2) surjects onto Cl(OD0) for all conductors f .)

◦ To know how high to compute, one can use [4, Theorem 1], which (conditionally) gives
the largest fundamental discriminant D0 with class group of exponent dividing E.

• Then for each fundamental discriminant D0, compute the complete list of f candidates:
those satisfying the divisibility property L(f) | (12 · |O×

D0
| · E) from Lemma 5.1.

◦ By Lemma 5.2, f | θ(L(f)). So to determine the complete list of f candidates, one
only needs to check the divisors of θ(m) for m | (12 · |O×

D0
| · E).

• For each f candidate, check if the exponent of Cl(OD0f2) is E.
◦ To check very large f candidates, it is most efficient to first verify that the exponent

of Cl(OD0f ′2) divides E for small divisors f ′ | f (since for f ′ | f , Cl(OD0f2) surjects
onto Cl(OD0f ′2) by [2, Corollary 7.17]). This optimization quickly excludes the vast
majority of f candidates.

For exponents 1 ≤ E ≤ 8, we used this algorithm to compute Tables A.1 - A.8 (see [7] for
the code). This completes the proof of Theorem 1.3. Observe that to compute fundamental
discriminants D0 with Cl(OD0) of exponent dividing E, the above algorithm uses the classifications
from [4, Theorem 1]. The completeness of each of these classifications depends on the conditions
listed in Theorem 1.3 (see [4, Theorem 2]). And in fact, this is only reason we need such conditions;
the rest of the algorithm is based on the unconditional results about conductors developed in this
paper.
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Appendix A. Tables of Discriminants

This appendix contains the tables of discriminants we computed with class groups of small
exponent. For sake of space, the complete list of discriminants is omitted from Tables A.4, A.6,
and A.8. The full data can be found at [7, Tables 1-8].

Table A.1. Discriminants with class group of exponent 1.
This table contains 13 discriminants, with largest value −163.

Class Group Discriminants
{e} −3, −4, −7, −8, −11, −12, −16, −19, −27, −28, −43, −67, −163
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Table A.2. Discriminants with class group of exponent 2.
This table contains 88 discriminants, with largest value −7392.

Class Group Discriminants
Z/2Z −15, −20, −24, −32, −35, −36, −40, −48, −51, −52, −60, −64, −72, −75,

−88, −91, −99, −100, −112, −115, −123, −147, −148, −187, −232, −235,
−267, −403, −427

(Z/2Z)2 −84, −96, −120, −132, −160, −168, −180, −192, −195, −228, −240, −280,
−288, −312, −315, −340, −352, −372, −408, −435, −448, −483, −520,
−532, −555, −595, −627, −708, −715, −760, −795, −928, −1012, −1435

(Z/2Z)3 −420, −480, −660, −672, −840, −960, −1092, −1120, −1155, −1248,
−1320, −1380, −1428, −1540, −1632, −1848, −1995, −2080, −3003,
−3040, −3315

(Z/2Z)4 −3360, −5280, −5460, −7392

Table A.3. Discriminants with class group of exponent 3.
This table contains 29 discriminants, with largest value −4027.

Class Group Discriminants
Z/3Z −23, −31, −44, −59, −76, −83, −92, −107, −108, −124, −139, −172,

−211, −243, −268, −283, −307, −331, −379, −499, −547, −643, −652,
−883, −907

(Z/3Z)2 −972, −1228, −2188, −4027

Table A.4. Discriminants with class group of exponent 4.
This table contains 485 discriminants, with largest value −887040.

See [7, Table 4].

Table A.5. Discriminants with class group of exponent 5.
This table contains 31 discriminants, with largest value −37363.

Class Group Discriminants
Z/5Z −47, −79, −103, −127, −131, −179, −188, −227, −316, −347, −412, −443,

−508, −523, −571, −619, −683, −691, −739, −787, −947, −1051, −1123,
−1723, −1747, −1867, −2203, −2347, −2683

(Z/5Z)2 −12451, −37363
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Table A.6. Discriminants with class group of exponent 6.
This table contains 1236 discriminants, with largest value −43522752.

See [7, Table 6].

Table A.7. Discriminants with class group of exponent 7.
This table contains 40 discriminants, with largest value −118843.

Class Group Discriminants
Z/7Z −71, −151, −223, −251, −284, −343, −463, −467, −487, −587, −604,

−811, −827, −859, −892, −1163, −1171, −1372, −1483, −1523, −1627,
−1787, −1852, −1948, −1987, −2011, −2083, −2179, −2251, −2467,
−2707, −3019, −3067, −3187, −3907, −4603, −5107, −5923

(Z/7Z)2 −63499, −118843

Table A.8. Discriminants with class group of exponent 8.
This table contains 2329 discriminants, with largest value −1723802080.

See [7, Table 8].
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