
THREE DENSITY-ONE FORMULATIONS OF CONVERGENCE

ERICK ROSS, ALEXANDRE VAN LIDTH, MARTHA ROSE WOLF, AND HUI XUE

Abstract. In this expository paper, we discuss three different density-one formulations of

convergence. We give a proof showing the implications between all of these formulations.

We also take note of two surprising corollaries of these implications.

1. Introduction

In number theory, if one cannot prove a conjecture for all natural numbers n ∈ N, the next
best thing might be to at least prove the conjecture for a density-one subset of N. However,
this brings up the question of how to formulate a density-one notion of convergence. In

particular, given a sequence of real numbers {αn}n≥1, what is the correct density-one analog

of αn converging to L? We list what are, in the authors’ opinion, the three most natural

possible formulations:

(A) For all ε > 0, {n : |αn − L| < ε} is a density-one subset of N.
(B) The average distance

1

x

∑
n≤x

|αn − L| → 0 as x → ∞.

(C) There exists a density-one subset S ⊆ N such that αn → L as n → ∞ along S.

We note here that formulation (A) is known as statistical convergence, formulation (B) is

known as strong Cesàro convergence, and formulation (C) is known as s∗-convergence [1, 2].

The question of which formulation to use recently came up in two unrelated works of the

authors, [5] and [4].

In [5], the authors were interested in the sequence {αn}n≥1, where αn denotes the inverse

of the degree of the coefficient field of the n-th weight k newform (with the set of weight k

newforms ordered by level); see [5] for details. The weak level-N Maeda conjecture states

that αn → 0. However, we were only able to show the weaker result, formulation (A), for

this sequence. So, the question came up if our result could truly be called a density-one

version of the weak level-N Maeda conjecture, or if (C) was in fact the correct density-one

formulation. A closely related question was also raised by Serre [6, Question, p. 89], where

he proved formulation (A) for {αn}n≥1, then asked if this result could be strengthened.
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In [4], the first author wanted to prove that the expected density E[d(T )] = limx→∞
1
x

∑
n≤x P[n ∈

T ] of a certain random set T ⊆ N was equal to 1. One strategy to prove this fact would be

to show that αn := P[n ∈ R] converges to 1 along a density-one subset S ⊆ N. However, this
brought up the question if the above strategy (i.e. formulation (C)) is actually necessary to

show the desired result (i.e. formulation (B)), or if it is a strictly stronger statement.

In general, formulation (B) turns out to be strictly stronger than formulations (A) and

(C). Surprisingly, for bounded sequences {αn}n≥1, on the other hand, all three formulations

turn out to be equivalent. These implications were originally shown in [3].

Theorem 1.1. Let {αn}n≥1 denote a sequence of real numbers, and L ∈ R. Then assuming

the sequence {αn}n≥1 is bounded, the following are equivalent.

(A) For all ε > 0, {n : |αn − L| < ε} is a density-one subset of N.
(B) The average distance from L,

1

x

∑
n≤x

|αn − L| → 0 as x → ∞.

(C) There exists a density-one subset S ⊆ N such that αn → L as n → ∞ along S.

In general, (B) implies (A) and (C), which are both equivalent.

This theorem has two surprising corollaries. Corollary 2.1 states that convergence along

sets of density 1 − δ implies convergence along a set of density 1. Corollary 2.2 gives a

set-theoretic interpretation of Theorem 1.1, not involving any sequences of real numbers.

2. Proof of the main theorem

We now give a proof of Theorem 1.1. Throughout the proof, we will denote the density

of a set T ⊆ N by d(T ) := limx→∞
1
x
#{n ≤ x : n ∈ T}.

Proof.

Part 1: (B) implies (A)

For all ε > 0, observe that

d({n : |αn − L| ≥ ε}) = lim
x→∞

1

x
#{n ≤ x :

1

ε
|αn − L| ≥ 1} ≤ lim

x→∞

1

x

∑
n≤x

1

ε
|αn − L| = 0.

Hence {n : |αn − L| < ε} is a density-one subset of N, as desired.

Part 2: (C) implies (A)

Let S ⊆ N denote the density-one set from (C). Then since αn → L along S, we must

have that for all ε > 0, {n ∈ S : |αn − L| ≥ ε} is finite. This then yields

d({n : |αn − L| ≥ ε}) ≤ d(N\S) + d({n ∈ S : |αn − L| ≥ ε}) = 0,

which means that {n : |αn − L| < ε} is a density-one subset of N, as desired.
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Part 3: (A) implies (C)

For a set T ⊆ N, let dx(T ) denote the interval density

dx(T ) :=
1

x
#{n ≤ x : n ∈ T}.

Observe that for all k ∈ N, ε > 0; since {n : |αn − L| ≥ 1/k} has density zero, there exists

an M ∈ N such that

dx({n : |αn − L| ≥ 1/k}) < ε for all x ≥ M.

Hence, we can construct a strictly increasing sequence {Mk}k≥1 such that M1 = 1, and for

each k ≥ 2,

dx ({n : |αn − L| ≥ 1/k}) < 1/2k for all x ≥ Mk. (2.1)

We then define the set S as follows:

S :=
∞⋃
k=1

{n ∈ [Mk,Mk+1) : |αn − L| < 1/k}.

Clearly, αn → L along S, since for all k ∈ N, |αn −L| < 1/k for all n ≥ Mk in S. It remains

to show that d(S) = 1. For positive real numbers x, let

k(x) := max{k ∈ N : Mk ≤ x}.

Here, k(x) → ∞ as x → ∞ since {Mk}k≥1 is strictly increasing. Then for each n ≤ x,

observe that n ∈ [Mk,Mk+1) for some k ≤ k(x). This implies that {n ≤ x : n /∈ S} ⊆{
n ≤ x : |αn − L| ≥ 1

k(x)

}
, and so

d(N\S) = lim
x→∞

1

x
#{n ≤ x : n /∈ S}

≤ lim
x→∞

1

x
#

{
n ≤ x : |αn − L| ≥ 1

k(x)

}
= lim

x→∞
dx

({
n : |αn − L| ≥ 1

k(x)

})
≤ lim

x→∞

1

2k(x)
(by (2.1))

= 0,

as desired.

Part 4: (C) implies (B), assuming boundedness
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Let S ⊆ N denote the density-one subset from (C). Since {αn}n≥1 is bounded, let M ∈ R
be such that |αn − L| ≤ M for all n ≥ 1. Then

lim
x→∞

1

x

∑
n≤x

|αn − L| = lim
x→∞

1

x

∑
n≤x
n∈S

|αn − L|+ lim
x→∞

1

x

∑
n≤x
n/∈S

|αn − L|

≤ lim
x→∞

1

x

∑
n≤x
n∈S

|αn − L|+M · lim
x→∞

1

x

∑
n≤x
n/∈S

1

= 0 +M · d(N\S) (since |αn − L| → 0 along S)

= 0,

completing the proof. □

In the following corollary, we show that if a sequence converges along density 1−δ subsets

of N, then it also converges along a density 1 subset of N.

Corollary 2.1. Let {αn}n≥1 be a sequence of real numbers, and L ∈ R. Then the following

are equivalent.

(A′) For all δ > 0, there exists a density 1− δ subset Sδ ⊆ N such that αn → L as n → ∞
along Sδ.

(C′) There exists a density-one subset S ⊆ N such that αn → L as n → ∞ along S.

Proof. The implication (C′) implies (A′) is trivial, and we will show (A′) implies (C′). By

Theorem 1.1, it suffices to show that (A′) implies (A).

Fix ε > 0, and we will show that d({n : |αn − L| ≥ ε}) = 0. For arbitrary δ > 0,

let Sδ be the set from (A′) such that d(Sδ) = 1 − δ and αn → L along Sδ. Then the set

{n ∈ Sδ : |αn − L| ≥ ε} is finite, which implies that

d({n : |αn − L| ≥ ε}) ≤ d(N\Sδ) + d({n ∈ Sδ : |αn − L| ≥ ε}) < δ + 0 = δ.

Hence since δ was arbitrary, we have d({n : |αn − L| ≥ ε}) = 0, as desired. □

Finally, we give a set-theoretic interpretation of Theorem 1.1, not involving any sequences

of real numbers.

Corollary 2.2. Let {Tk}k≥1 denote a collection of disjoint subsets of N. Then the following

are equivalent.

(A′′) Each Tk has density zero in N.
(C′′) There exists a density-one subset S ⊆ N such that Tk ∩ S is finite for all k ≥ 1.
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Proof. Let {αn}n=1 be the sequence given by

αn =

 1
k

if n ∈ Tk

0 if n /∈ Tk for all k.

Note that for all r ≥ 1, {n : αn ≥ 1/r} =
⋃r

k=1 Tk. Then considering the densities of both

sides, one can immediately see that (A) and (A′′) are equivalent. Similarly, it is immediate

to see that (C) and (C′′) are equivalent since αn → 0 along S if and only if Tk ∩ S is finite

for all k ≥ 1. □
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