THREE DENSITY-ONE FORMULATIONS OF CONVERGENCE

ERICK ROSS, ALEXANDRE VAN LIDTH, MARTHA ROSE WOLF, AND HUI XUE

ABSTRACT. In this expository paper, we discuss three different density-one formulations of convergence. We give a proof showing the implications between all of these formulations. We also take note of two surprising corollaries of these implications.

1. Introduction

In number theory, if one cannot prove a conjecture for all natural numbers $n \in \mathbb{N}$, the next best thing might be to at least prove the conjecture for a density-one subset of \mathbb{N} . However, this brings up the question of how to formulate a density-one notion of convergence. In particular, given a sequence of real numbers $\{\alpha_n\}_{n\geq 1}$, what is the correct density-one analog of α_n converging to L? We list what are, in the authors' opinion, the three most natural possible formulations:

- (A) For all $\varepsilon > 0$, $\{n : |\alpha_n L| < \varepsilon\}$ is a density-one subset of \mathbb{N} .
- (B) The average distance $\frac{1}{x} \sum_{n \le x} |\alpha_n L| \to 0 \text{ as } x \to \infty.$
- (C) There exists a density-one subset $S \subseteq \mathbb{N}$ such that $\alpha_n \to L$ as $n \to \infty$ along S.

We note here that formulation (A) is known as *statistical convergence*, formulation (B) is known as *strong Cesàro convergence*, and formulation (C) is known as s^* -convergence [1, 2].

The question of which formulation to use recently came up in two unrelated works of the authors, [5] and [4].

In [5], the authors were interested in the sequence $\{\alpha_n\}_{n\geq 1}$, where α_n denotes the inverse of the degree of the coefficient field of the *n*-th weight k newform (with the set of weight k newforms ordered by level); see [5] for details. The weak level-N Maeda conjecture states that $\alpha_n \to 0$. However, we were only able to show the weaker result, formulation (A), for this sequence. So, the question came up if our result could truly be called a density-one version of the weak level-N Maeda conjecture, or if (C) was in fact the correct density-one formulation. A closely related question was also raised by Serre [6, Question, p. 89], where he proved formulation (A) for $\{\alpha_n\}_{n\geq 1}$, then asked if this result could be strengthened.

²⁰²⁰ Mathematics Subject Classification. 40A35 and 11B05.

Key words and phrases. density one, convergence.

In [4], the first author wanted to prove that the expected density $\mathbb{E}[d(T)] = \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \mathbb{P}[n \in T]$ of a certain random set $T \subseteq \mathbb{N}$ was equal to 1. One strategy to prove this fact would be to show that $\alpha_n := \mathbb{P}[n \in R]$ converges to 1 along a density-one subset $S \subseteq \mathbb{N}$. However, this brought up the question if the above strategy (i.e. formulation (C)) is actually necessary to show the desired result (i.e. formulation (B)), or if it is a strictly stronger statement.

In general, formulation (B) turns out to be strictly stronger than formulations (A) and (C). Surprisingly, for bounded sequences $\{\alpha_n\}_{n\geq 1}$, on the other hand, all three formulations turn out to be equivalent. These implications were originally shown in [3].

Theorem 1.1. Let $\{\alpha_n\}_{n\geq 1}$ denote a sequence of real numbers, and $L\in\mathbb{R}$. Then assuming the sequence $\{\alpha_n\}_{n\geq 1}$ is bounded, the following are equivalent.

- (A) For all $\varepsilon > 0$, $\{n : |\alpha_n L| < \varepsilon\}$ is a density-one subset of \mathbb{N} .
- (B) The average distance from L, $\frac{1}{x} \sum_{n \le x} |\alpha_n L| \to 0$ as $x \to \infty$.
- (C) There exists a density-one subset $S \subseteq \mathbb{N}$ such that $\alpha_n \to L$ as $n \to \infty$ along S.

In general, (B) implies (A) and (C), which are both equivalent.

This theorem has two surprising corollaries. Corollary 2.1 states that convergence along sets of density $1 - \delta$ implies convergence along a set of density 1. Corollary 2.2 gives a set-theoretic interpretation of Theorem 1.1, not involving any sequences of real numbers.

2. Proof of the main theorem

We now give a proof of Theorem 1.1. Throughout the proof, we will denote the density of a set $T \subseteq \mathbb{N}$ by $d(T) := \lim_{x \to \infty} \frac{1}{x} \# \{n \le x : n \in T\}.$

Proof.

Part 1: (B) implies (A)

For all $\varepsilon > 0$, observe that

$$d(\{n: |\alpha_n - L| \ge \varepsilon\}) = \lim_{x \to \infty} \frac{1}{x} \#\{n \le x: \frac{1}{\varepsilon} |\alpha_n - L| \ge 1\} \le \lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} \frac{1}{\varepsilon} |\alpha_n - L| = 0.$$

Hence $\{n: |\alpha_n - L| < \varepsilon\}$ is a density-one subset of \mathbb{N} , as desired.

Part 2: (C) implies (A)

Let $S \subseteq \mathbb{N}$ denote the density-one set from (C). Then since $\alpha_n \to L$ along S, we must have that for all $\varepsilon > 0$, $\{n \in S : |\alpha_n - L| \ge \varepsilon\}$ is finite. This then yields

$$d(\{n: |\alpha_n - L| \ge \varepsilon\}) \le d(\mathbb{N}\backslash S) + d(\{n \in S: |\alpha_n - L| \ge \varepsilon\}) = 0,$$

which means that $\{n: |\alpha_n - L| < \varepsilon\}$ is a density-one subset of \mathbb{N} , as desired.

Part 3: (A) implies (C)

For a set $T \subseteq \mathbb{N}$, let $d_x(T)$ denote the interval density

$$d_x(T) := \frac{1}{x} \# \{ n \le x : n \in T \}.$$

Observe that for all $k \in \mathbb{N}$, $\varepsilon > 0$; since $\{n : |\alpha_n - L| \ge 1/k\}$ has density zero, there exists an $M \in \mathbb{N}$ such that

$$d_x(\{n: |\alpha_n - L| \ge 1/k\}) < \varepsilon \text{ for all } x \ge M.$$

Hence, we can construct a strictly increasing sequence $\{M_k\}_{k\geq 1}$ such that $M_1=1$, and for each $k\geq 2$,

$$d_x(\{n : |\alpha_n - L| \ge 1/k\}) < 1/2^k \text{ for all } x \ge M_k.$$
 (2.1)

We then define the set S as follows:

$$S := \bigcup_{k=1}^{\infty} \{ n \in [M_k, M_{k+1}) : |\alpha_n - L| < 1/k \}.$$

Clearly, $\alpha_n \to L$ along S, since for all $k \in \mathbb{N}$, $|\alpha_n - L| < 1/k$ for all $n \ge M_k$ in S. It remains to show that d(S) = 1. For positive real numbers x, let

$$k(x) := \max\{k \in \mathbb{N} : M_k \le x\}.$$

Here, $k(x) \to \infty$ as $x \to \infty$ since $\{M_k\}_{k \ge 1}$ is strictly increasing. Then for each $n \le x$, observe that $n \in [M_k, M_{k+1})$ for some $k \le k(x)$. This implies that $\{n \le x : n \notin S\} \subseteq \{n \le x : |\alpha_n - L| \ge \frac{1}{k(x)}\}$, and so

$$d(\mathbb{N}\backslash S) = \lim_{x \to \infty} \frac{1}{x} \# \{ n \le x : n \notin S \}$$

$$\le \lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : |\alpha_n - L| \ge \frac{1}{k(x)} \right\}$$

$$= \lim_{x \to \infty} d_x \left(\left\{ n : |\alpha_n - L| \ge \frac{1}{k(x)} \right\} \right)$$

$$\le \lim_{x \to \infty} \frac{1}{2^{k(x)}} \quad \text{(by (2.1))}$$

$$= 0,$$

as desired.

Part 4: (C) implies (B), assuming boundedness

Let $S \subseteq \mathbb{N}$ denote the density-one subset from (C). Since $\{\alpha_n\}_{n\geq 1}$ is bounded, let $M \in \mathbb{R}$ be such that $|\alpha_n - L| \leq M$ for all $n \geq 1$. Then

$$\lim_{x \to \infty} \frac{1}{x} \sum_{n \le x} |\alpha_n - L| = \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ n \in S}} |\alpha_n - L| + \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ n \notin S}} |\alpha_n - L|$$

$$\leq \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ n \in S}} |\alpha_n - L| + M \cdot \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ n \notin S}} 1$$

$$= 0 + M \cdot d(\mathbb{N}\backslash S) \quad \text{(since } |\alpha_n - L| \to 0 \text{ along } S\text{)}$$

$$= 0,$$

completing the proof.

In the following corollary, we show that if a sequence converges along density $1 - \delta$ subsets of \mathbb{N} , then it also converges along a density 1 subset of \mathbb{N} .

Corollary 2.1. Let $\{\alpha_n\}_{n\geq 1}$ be a sequence of real numbers, and $L\in\mathbb{R}$. Then the following are equivalent.

- (A') For all $\delta > 0$, there exists a density 1δ subset $S_{\delta} \subseteq \mathbb{N}$ such that $\alpha_n \to L$ as $n \to \infty$ along S_{δ} .
- (C') There exists a density-one subset $S \subseteq \mathbb{N}$ such that $\alpha_n \to L$ as $n \to \infty$ along S.

Proof. The implication (C') implies (A') is trivial, and we will show (A') implies (C'). By Theorem 1.1, it suffices to show that (A') implies (A).

Fix $\varepsilon > 0$, and we will show that $d(\{n : |\alpha_n - L| \ge \varepsilon\}) = 0$. For arbitrary $\delta > 0$, let S_{δ} be the set from (A') such that $d(S_{\delta}) = 1 - \delta$ and $\alpha_n \to L$ along S_{δ} . Then the set $\{n \in S_{\delta} : |\alpha_n - L| \ge \varepsilon\}$ is finite, which implies that

$$d(\{n : |\alpha_n - L| \ge \varepsilon\}) \le d(\mathbb{N} \setminus S_\delta) + d(\{n \in S_\delta : |\alpha_n - L| \ge \varepsilon\}) < \delta + 0 = \delta.$$

Hence since δ was arbitrary, we have $d(\{n : |\alpha_n - L| \ge \varepsilon\}) = 0$, as desired.

Finally, we give a set-theoretic interpretation of Theorem 1.1, not involving any sequences of real numbers.

Corollary 2.2. Let $\{T_k\}_{k\geq 1}$ denote a collection of disjoint subsets of \mathbb{N} . Then the following are equivalent.

- (A") Each T_k has density zero in \mathbb{N} .
- (C") There exists a density-one subset $S \subseteq \mathbb{N}$ such that $T_k \cap S$ is finite for all $k \geq 1$.

Proof. Let $\{\alpha_n\}_{n=1}$ be the sequence given by

$$\alpha_n = \begin{cases} \frac{1}{k} & \text{if } n \in T_k \\ 0 & \text{if } n \notin T_k \text{ for all } k. \end{cases}$$

Note that for all $r \geq 1$, $\{n : \alpha_n \geq 1/r\} = \bigcup_{k=1}^r T_k$. Then considering the densities of both sides, one can immediately see that (A) and (A") are equivalent. Similarly, it is immediate to see that (C) and (C") are equivalent since $\alpha_n \to 0$ along S if and only if $T_k \cap S$ is finite for all $k \geq 1$.

ACKNOWLEDGEMENTS

The preparation of this paper was supported by NSF grant DMS-2349174. Hui Xue is supported by Simons Foundation Grant MPS-TSM-00007911.

References

- [1] J. S. Connor. The statistical and strong p-Cesàro convergence of sequences. Analysis, 8(1-2):47-63, 1988.
- [2] Giuseppe Di Maio and Ljubiša D. R. Kočinac. Statistical convergence in topology. *Topology Appl.*, 156(1):28–45, 2008.
- [3] H. Fast. Sur la convergence statistique. Colloq. Math., 2:241–244 (1952), 1951.
- [4] Erick Ross. Cramér α -random primes and the fundamental theorem of arithmetic. Submitted, 2025.
- [5] Erick Ross, Alexandre van Lidth, Martha Rose Wolf, and Hui Xue. Proportion of Atkin-Lehner sign patterns and Hecke eigenvalue equidistribution. *Submitted*, 2025.
- [6] Jean-Pierre Serre. Répartition asymptotique des valeurs propres de l'opérateur de Hecke T_p . J. Amer. Math. Soc., 10(1):75–102, 1997.
- (E. Ross) School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634

Email address: erickjohnross@gmail.com

(A. van Lidth) Department of Mathematics and Statistics, Amherst College, Amherst, MA 01002

Email address: alexandrevanlidth@gmail.com

- (M. R. Wolf) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109 Email address: martharose.wolf@gmail.com
- (H. Xue) School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634

Email address: huixue@clemson.edu